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ABSTRACT

A two-layer shallow water equation model is used to investigate the linear
stability of a coastal upwelling front. The model features a surface front near a
coastal boundary and bottom topography which is an arbitrary function of the
cross-shelf coordinate. By combining the various conservation statements for the
global properties of the system, a general stability theorem is established which
allows the a priori determination of the stability of a coastal upwelling front.

Unstable waves are found for the modelled coastal upwelling front. The unsta-
ble wave motions are frontally-trapped and dominant in the upper layer. The wave
propagates phase in the direction of the basic state flow and the primary energy
conversion is via baroclinic instability. The effect of varying the model parameters
is presented. Moving the front closer than ~ 2 Rossby radii to the coastal bound-
ary results in a decrease in the growth rate of the fastest growing wave. Increasing
the overall vertical shear of the basic state flow, by either decreasing the lower
layer depth or increasing the steepness of the interface, results in an increase in
the growth of the fastest growing wave.

A bottom sloping in the same sense as the interface results in a decrease of
the growth rates and alongfront wavenumbers of the unstable waves in the sys-
tem. Linearized bottom friction is included in the stability model and results in a
decrease in the growth rates of the unstable waves by extracting energy from the
system. Since the unstable mode is strongest in the upper layer, bottom friction
will not stabilize the upwelling front.

A comparison between the predictions from the simple two-layer model and
observed alongfront variability for three areas of active upwelling is presented.
Reasonable agreement is found, suggesting that observed alongfront variability
can be interpreted in terms of the instability of a coastal upwelling front.
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Chapter 1

Introduction

Fronts, regions of sharp, horizontal contrast in some fluid property (e.g.
temperature, salinity or density), are a common feature in the ocean and
atmosphere. A drastic change in air temperature from one day to the next
is often the result of an atmospheric temperature front passing overhead.
In the ocean, density fronts are associated with large scale jets such as the
Gulf Stream and Kuroshio as well as with convergence zones which can span
ocean basins. Near coastal barriers, several types of fronts can be identi-
fied. A layer of light water may flow alongshore next to a coast, forming a
coastal current separated from the waters offshore by a density front. An
example of such a current is the Norwegian coastal current. A surface to
bottom density front may separate water masses on and off the continental
shelf, an example of which is the shelfbreak front off New England in the
Middle Atlantic Bight. Another type of front that can form in the coastal
ocean is due to the process of upwelling. An alongshore wind directed so
that the coastal barrier is to its left in the northern hemisphere drives an
offshore Ekman flux in the upper part of the water column. This offshore
flux requires some combination of horizontal and vertical flow to conserve
the volume of seawater. The resulting sharp, near-surface horizontal den-
sity contrast between the less dense surface water offshore and the newly

upwelled water inshore is called the coastal upwelling front.
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Upwelling occurs in many coastal regions of the world’s oceans includ-
ing the western coast of North America, southwest and northwest Africa,
Peru and Nova Scotia. An example of a vertical section of density ob-
tained off the coast of Oregon during the upwelling season (April-August,
a time of persistent winds from the north-northwest) is shown in Fig. 1.1.
The coastal upwelling front is readily identified as the region of compressed
density contours intersecting the surface arproximately 10 km offshore and
continuing seaward at approximately 15-20 m depth. If alongshore winds
were steady and the coastline and bottom topography uniform in the down-
wind direction, the coastal upwelling front would tend to form parallel to
the coastline. Horizontal maps of surface properties (usually temperature
because of its relative ease of measurement) often indicate a great deal of
alongfront (the direction parallel to the front) variability in the offshore
position of the front. An example of this alongfront variability is revealed
in a map of sea surface temperature (SST) obtained from an airborne ra-
diometer off the coast of Oregon (Fig. 1.2). The coastal upwelling front is
the area of compressed isotherms approximately 20 km offshore with cold,
upwelled water lying closest to shore. There exists a wave-like meander in
the front with an alongfront wavelength of 30-50 km. Alongfront variabil-
ity on these scales is a common feature of coastal upwelling fronts. Other
observations suggest that these disturbances can extend alongshore over
many repeated wavelengths (Breaker and Mooers, 1986) and that the am-
plitude of the meanders can grow with time (Petrie et al., 1987). While
several mechanisms can be suggested to explain alongfront variability in
the coastal upwelling front, for example the influence of variations in the
alongshore topography and/or bathymetry, their wavelike nature and ob-
served growth suggest that they may be unstable waves which amplify on
the front in the absence of external forcing.

Fronts are an important feature of the coastal ocean and an under-

standing of their variability is essential tc a complete description of coastal
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Figure 1.1: A density section near 45°15’ N off the coast of Oregon during
July, 1973. The region of compressed isopycnals intersecting the surface
approximately 10 km offshore and continuing seaward at approximately
20 m depth is the coastal upwelling front. From Curtin (1979).
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circulation. Fronts in density and other water properties such as nutrient

s

content play an important role in the biology of the coastal environment. 1

Large amplitude meanders in the coastal upwelling front direct the nor-

XN
5% NY

mally alongshelf coastal flow cross-shelf and may, with time, grow to the

:” point where they break the continuity of the alongshelf flow by forming 1
E - detached eddies and contribute significantly to the cross-shelf transport of 9
:-' water properties. Clearly, it would be useful to understand the formation ‘
L of these frontal meanders and to be able to predict their alongfront length

'.“'_?_', scale, rate of growth and other relevant properties.

:; The goal of this study is to show that wave-like disturbances with the

:,. properties of observed frontal variability can be produced by hydrodynamic

.‘ instability. The approach will be to examine the potential for unstable dis-

i turbances to form on a basic state flow which has presumably arisen pre-

viously from the influence of an alongshore wind via traditional upwelling

= processes. Small amplitude, hence linear, disturbances of normal mode

{ form (periodic wave form in space with the possibility of ezponential growth

N :f-‘j; in time) are examined. In this study, the dynamics of shallow, rotating lay-

ers of homogeneous incompressible fluids are considered. The governing '
'j’::, equations employed are the shallow water equations rather than the quasi-

geostrophic equations (Pedlosky, 1986) because the latter, while simplifying

X 4:: the instability calculation, are inapplicable to frontal regions. Large inter-

K -“\ face displacements, strong horizontal shears and large slcpes in the bottom

‘: topography (which are allowed below) are not allowed in quasi-geostrophic

theory. The inclusion of ageostrophic dynamics will substantially modify
the well known results of quasi-geostrophic stability theory.
A review of relevant frontal instability models will be presented first,

followed by a description of the particular model employed in this study. In
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s Yo fa e
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the latter chapter relevant parameters and symbols will be defined, the gov- |
erning equations will be stated and an approximation used to simplify the

numerical solution technique will be described. Next, conservation state-
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ments are derived and used to obtain general stability criteria. Following
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this, results from a numerical solution for a variety of basic states and ge-

""
A

ometries will be presented. Next, a comparison of the model calculations
to observations from several upwelling regions will be presented. Finally, a

discussion chapter is presented and conclusions summarized.
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Background

U :

\n’

~
'.f:,, Fronts in the ocean are of interest for several reasons. They are often re-
" gions of large velocities and velocity gradients which are fundamental to the
Ko7 structure of the circulation. Fronts often separate different water masses
E_, and are certainly important in biological processes. This study does not
vt concern the formation, internal dynamics or observational description and
K o classification of oceanic fronts. For a general review of fronts in the coastal

~ ocean see Bowman and Esaias (1978), Richards (1981) or Simpson and
o James (1986). The formation of fronts has been studied extensively espe-
f ‘-«'::: cially in the atmosphere. A discussion of frontogenesis in the coastal ocean
"~' can be found in the above references and a thorough study of atmospheric
Gy frontogenesis can be found in the work of Hoskins and Bretherton (1972).
E:‘_ Models of the formation of the coastal upwelling front are of particular in-
: j,:.' terest because they provide the basic state density and velocity fields whose
.'5‘: stability are investigated in this study. A brief review of relevant models
o is presented below. The dynamics and evolution of frontal regions whose
B0 initial structure is assurned known has been studied extensively (e.g. Gar-
B
: N vive, 1978ab and 1980). Recently, Cushman-Roisin (1986) has developed a
“3 formalism to study frontal geostrophic dynamics. A large body of observa-
-.;. tional work on fronts exists. Studies relevant to the coastal upwelling front
14l

include Curtin (1979), Mooers et al. (1976) and Stevenson et al. (1974).
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The formation of the coastal upwelling front has been studied using a
hierarchy of analytic models. The basic physical mechanism for frontal
formation is described in chapter 1 and repeated here. An alongshore wind
stress with the coast on its left in the northern hemisphere drives an offshore
Ekman flux in the upper part of the water column. To conserve mass, water
is upwelled from below creating a density front between the dense inshore
water and the lighter offshore water. Csanady (1971, 1977) considered the
formation of a coastal upwelling front in an inviscid two-layer model. After
the action of an impulsive alongshore wind stress, a steady solution was
found by conserving potential vorticity in each layer. The interface rises to
an exponential profile over a scale equal to the internal Rossby radius of
deformation and intersects the sea surface some specified distance offshore.
Pedlosky (1978a,b) developed a nonlinear inviscid model of upwelling in
a continuously stratified fluid. He modelled the offshore Ekman flux of
fluid in the upper part of the water column as a line sink of fluid at the
coast. The equilibrium solutions obtained by Pedlosky (1978a) have density
surfaces rising to contact the surface and a length scale again given by the
internal Rossby radius of deformation. The density surfaces in a model
with linear stratification all intersect the surface at the coast thus forming a
sharp horizontal density contrast (a front). The time-dependent nonlinear
solutions in Pedlosky (1978b) illustrate the sharpening of the horizontal
density gradients over scales less than the Rossby deformation radius. A
major deficiency of the latter two models is the replacement of the link
between the inertial interior flow and the frictional surface Ekman layer by
the line sink of fluid at the coast. This results in the surface front not being
able to move offshore as is observed in nature (Mooers et al., 1976).

In an alternative approach, de Szoeke and Richman (1981, 1984) include
a simple parameterization of vertical mixing processes in a two-layer model
of wind-driven coastal upwelling. They include entrainment between the
two layers due to wind mixing which keeps the upper mixed layer from dis-
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appearing and also allows denser deep water to surface. This entrainment
process permits horizontal density contrasts to form away from the coast in
the upper mixed layer. In response to an alongshore wind stress the pycno-
cline initially rises over a distance equal to the Rossby radius of deformation
to contact the surface adjacent to the coast. This coastal upwelling front is
then advected offshore leaving behind a thin 0(1 km) coastal zone of active
upwelling. The width of the front itself is found to be 0(100 m) in agreement
with the sharp fronts observed in nature (Mooers et al., 1976). Recently,
Rudnick and Davis (1987) have formulated a Lagrangian theory of fron-
togenesis in mixed layers for a variety of entrainment parameterizations.
The model describes the formation of fronts given a specified cross-front
velocity field. For a velocity field associated with coastal upwelling the
mixed layer shoals over a distance equal to the Rossby deformation radius
and eventually forms a thin front which is advected offshore much as in the
model of de Szoeke and Richman (1984).

While the details of the results from each of these models differ, they
each describe the formation of a density front which intersects the surface
of the ocean. The scale over which the interface or density surfaces warp
upward is generally the internal Rossby radius of deformation. The mixed
layer models are able to reproduce the offshore migration of the surface
front, a feature which is observed in nature.

Another approach to describing the formation of coastal upwelling fronts
is through the use of numerical models. These include processes omitted in
the simpler analytic models described above. They serve to provide details
about the structure of the frontal region both in density and velocity but
the essential results described above remain valid. See Brink (1983) for a
review and reference list of some relevant numerical models.

Another direction frontal studies have taken is to assume that the basic
frontal shape is known and investigate the possible existence of disturbances
on this mean state. The form of the disturbance is usually postulated to be
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wave-like and can either be stable (constant amplitude in time) or unstable
(amplitude grows with time). The stable modes of oceanic fronts have
been studied using various model basic states. For the most part, these
studies considered the dynamics of one or two homogeneous layers. Garvine
(1983) and Paldor (1983a) used similar linear, reduced gravity models with
uniform potential vorticity in the upper layer to obtain stable, frontally-
trapped waves. Garvine’s (1983) model included a thin dissipative zone
adjacent to the surface front where turbulent entrainment may occur. He
did not describe the details of the motion in this dissipative zone and only
considered it as a source or sink of fluid for the inviscid region away from
the surface front. Garvine (1983) obtained only waves with zero phase
speed because of the requirement that there be no horizontal shear of the
alongfront velocity at the boundary between the inviscid interior flow and
the viscous region near the surface front. He also stipulated that there be
no cross-stream flow between the inviscid interior and the dissipative zone.
Paldor (1983a) considered inviscid dynamics throughout the frontal region
and obtained wave solutions which propagated both in the direction of and
against the mean flow. Garvine (1984), in an extension of the reduced
gravity model described above, allowed the exchange of fluid between the
inviscid interior flow and the viscous frontal zone. A finite cross-stream
flow allows nonzero horizontal Reynolds stresses which contribute to the
change in time of the wave kinetic energy. He obtained waves which grew
spatially in the downstream direction when the dissipative zone entrained
water from below and fed cross-stream flow into the inviscid interior and
decaying waves for the reverse.

Several authors have included the effect of an active lower layer in stud-
ies of stable frontal waves. Bane and Hsueh (1980) considered a special
geometry with both the interface and the bottom profile linearly sloping
away from the coast. For the “upwelling” case where the interface is allowed

to warp upward and intersect the surface offshore they obtain a stable wave
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which they call a “complementary-mode edge wave”. This mode propagates

in the same sense as topographic waves (with the coast to the right in the
northern hemisphere) and consists of a barotropic oscillation inshore of the
front coupled to an oscillating interface offshore. Their basic state flow is
potentially unstable (see chapter 4), but the authors concentrated solely
on the stable modes of the system. Bane (1980) considered a two-layer
model with arbitrary interface and bottom geometries and in addition to
the complementary-mode edge wave found a stable frontally-trapped wave
which propagated in the same sense as topographic waves. Finally, Luther
and Bane (1980) used a continuously stratified model with arbitrary cur-
rent/density structure and bottom topography to examine these same types
of stable waves.

The above studies provide a description of the types of waves which
may be important in considering the stability of a coastal upwelling front.
The one-layer results of Paldor (1983) suggest that frontally-trapped waves
which propagate in either alongfront direction may be important in the
instability process. For a two-layer fluid with a flat bottom one might
anticipate the existence of a wave solution which is frontally-trapped, but
has comparable magnitudes in the two layers (a more “barotropic® mode).
With bottom topography, familiar vorticity wave modes including shelf
waves and the complimentary-mode edge waves of Bane and Hsueh (1980)
and Bane (1980) are introduced.

The study of unstable waves on oceanic density fronts relies quite heav-
ily on earlier quasi-geostrophic instability models. These earlier studies
provide a basic understanding of instability processes and a theoretical
framework upon which the frontal studies have built. The classic quasi-
geostrophic baroclinic instability studies of Charney (1949), Eady (1949),
Fjgrtoft (1951) and Phillips (1954) detail the mechanism by which energy
is transferred from the potential energy of the mean flow to the growing
disturbance. Studies such as Pedlosky (1964) and Killworth (1980) provide
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useful criteria for determining whether a particular mean flow will be un-
stable or not. Since the velocity fields associated with fronts consist of both

horizontal and vertical shear, barotropic instability, the process of energy
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conversion from the mean kinetic energy to the growing waves, can also be

%

.:‘;_: important. Studies of this type of instability have a long history going back
| :‘_: to Rayleigh (1880) with more recent contributions by Kuo (1949 and 1973)
Lo and Howard and Drazin (1964). An excellent summary of quasi-geostrophic

. instability appears in Pedlosky (1986).

| ',:'} However, for the reasons given in the first chapter, quasi-geostrophic

:'.:’ theory is clearly inapplicable to the study of fronta'! instability. One of

b the first studies of frontal instability using the shallow water equations
was that of Orlanski (1968). He studied a two-layer Margules front in-
- tersecting flat top and bottom boundaries and explored a wide range of

;-_‘_:."_ Rossby number—Richardson number space finding unstable waves at all
f:.:'j wavelengths. Orlanski (1969) extended the model to include arbitrary in-

: terface and bottom profiles with the goal of modelling unstable waves in the
f" Gulf Stream. He found that bottom topography plays an important role
-." in determining the properties of the unstable waves. The presence of slop-
:j:: ing bottom topography was found to stabilize (decrease the growth rates
) of the unstable waves, but not eliminate them) the system in agreement

"'::‘, with quasi-geostrophic results (e.g. Mechoso and Sinton, 1981). Orlanski

'._: concentrated on the Gulf Stream problem (small Rossby number flows) and

"}f. did not model a surface front over a continental shelf near a coast such as
Y ) the coastal upwelling front.

:‘? Many recent studies of frontal instability have employed a one-layer
Ej: reduced gravity model to simplify the mathematics. Killworth and Stern
L (1982) studied a model of a coastal current with a pool of light water

.r lying next to a coastal barrier (Fig. 2.1a). They showed that for this one-
f layer wall-bounded front, unstable waves exist even if the potential vorticity
, of the basic state is monotonic in the cross-front direction. A necessary
‘. 18
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Figure 2.1: Examples of reduced gravity, frontal instability model geome-
tries. (a) Coastal current. (b) Two-front current. (c) Isolated front.
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,__, condition for in~tability from quasi-geostrophic theory is that the basic state
':"_:: potential vorticity r~adient must change sign somewhere in the fluid. The
;’; monotonic potential vorticity model of Killworth and Stern (1982) clearly
¢ ) does not satisfy this criteria yet still yields unstable waves. This difference
‘ from quasi-geostrophic theory will be expounded upon further in chapter 4.
?’_-\. The stability of a coastal current has also been investigated by Paldor
:: (1983b) and Kubokawa (1986). The nonlinear long wave flow of a coastal
current was studied by Stern (1980) who found solutions representing bores,
i blocking and breaking waves.
:’.E A reduced gravity model with two fronts (Fig. 2.1b) has also received
:: attention in the study of frontal instability. Using a f-plane version of this
A model, Griffiths et al. (1982) found an unstable mode on a basic state with
‘_i: zero potential vorticity due to the resonance of two waves each trapped to a
o separate front. In addition, a high wavenumber weak instability was found
:x which involved one front only. Recently Hayashi and Young (1987) have
'-" investigated the stability of a one-layer, two-front model on an equatorial
f-plane and found unstable modes. Finally, Paldor (1986) found special
x nonlinear solutions on a two-front model which represent solitons. These

.

. waves merely propagate with time and do not grow temporally. He con-
siders long waves only and the role of nonlinearity on the stability of the
system with dispersion present is still an open question.

Noting the unstable mode growing on a single front with no apparent
interaction with the other front in the two-front model of Griffiths et al.

(1982), Killworth (1983) relaxed the uniform potential vorticity require-

SO TERARARN _ ¥

ment used by Paldor (1983a) in a study of a one-layer reduced gravity
model of an isolated front (Fig. 2.1c). He showed analytically that the

o front may be unstable if the upper layer’s depth tends to its value at in-
: finity more rapidly than the uniform potential vorticity front of the same
_,._' depth. Kubokawa (1985), using the same isolated front model, extended
vy the longwave results of Killworth (1983) to finite wavenumbers and did a
-,
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!‘ .;:’ detailed analysis of the energy transfers from the basic state to the unstable
"’E. waves. In both studies the unstable mode was weak (i.e. growth rate in
hat time very small) and the basic state potential vorticity gradient did not
) change sign.
j ::::, These reduced gravity models leave out the effect of an active lower
; a;: layer on the stability of a front. Two active layers allow for the possibility
L "‘ of true baroclinic instability. Many laboratory experiments have explored
o the instabilities associated with fronts (e.g. Stern et al., 1982; Griffiths et
‘:' al., 1982; Griffiths and Linden, 1982; Chia et al., 1982; and Narimousa and
\ : Maxworthy, 1985). These laboratory models, which all have active lower
‘:.;:' layers, exhibit growth rates much larger than those found by Killworth
» (1983). A further reason to include an active lower layer is to study the
' , effect of bottom topography. An active lower layer can also provide damp-
{ :'.';- ing to the system via bottom friction. Further, for a model of the coastal
i! .., upwelling front the lower layer velocity must satisfy the boundary condition
of no flow through the coastal barrier. Killworth et al. (1984) studied a
A"’ N two-layer isolated front with a flat bottom. They were able to show analyt-
ﬁ ically that for long waves and deep lower layers an unstable mode exists no
K N matter what the distribution of basic state potential vorticity. This mode
| ) has growth rates of the same magnitude as observed in the laboratory mod-
- els. They extended their analytic result to finite wavenumbers numerically
f:-' and briefly commented on the energy transfer between the mean flow and
" the growing waves.
.'. To model a coastal upwelling front correctly, a coastal barrier and bot-
:': tom topography must be included. These topographic features will be
E. Y included in the current study, the details of which are given in the follow-
.:E: , ing chapter. The previous models show that shallow lower layers destabi-
®. lize while sloping bottom topography may stabilize the system. Since the
.\,: coastal upwelling front environment contains both these features, it will be
i;': : interesting to investigate the net effect on the stability of the basic state
.
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flow. This study will also include an examination of the energy transfers
in the system which have not received adequate attention in the previous
studies of frontal stability. In addition, general criteria for a priors de-

termination of the stability of a given flow will be developed. This set of

criteria will be used to recover the results of several of the previous models.

Finally, since bottom friction has been shown to be an important process
in the coastal ocean (e.g. Brink and Allen, 1978; Brink, 1982; Allen, 1984),
the effect of a linearized form of friction on the stability of the system will
be investigated.
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Chapter 3

Model Description

The model employed here is a simple, two-layer shallow water equation
model with a rigid lid on an f-plane. The stability analysis will be car-
ried out both in the inviscid case and with linearized bottom friction. The
model explicitly leaves out the effects of wind stress and mixing. Even
though these processes are known to be important in the formation of the
coastal upwelling front (see chapter 2), their inclusion complicates the gov-
erning equations sufficiently that a full numerical model is required. Thus,
this model investigates the stability of a coastal upwelling front which has
previously arisen due to an alongshore wind stress as described in chap-
ter 2. The applicability of a stability model without wind stress may be
rationalized in the following two ways. First, coastal winds often become
“upwelling-favorable” (blowing alongshore with the coast to the left in the
northern hemisphere) for a period of a few days then relax or change di-
rection (Huyer, 1983). Therefore, this instability model may be thought
of as formally applying after one of these upwelling events. Second, the
model may be appropriate even in the presence of a wind stress. In the
real ocean, dissipation (e.g. via interfacial friction) will provide a sink of
energy so that the wind-forced system may reach a steady state. If the
dissipation is strong enough to effect this balance but weak enough to leave
the structure of the unstable waves essentially unchanged, then the wind
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Pl stress will only affect the stability analysis indirectly through its effects
o on the mean flow field. Since the wind forcing does not directly enter the
SRS
B~ stability calculation, an unforced model may be appropriate. However, as
‘D commented on further in chapter 7, time-dependence in the basic state flow
7, \' S
‘A field as forced by a time-dependent wind stress (or for a steady wind stress
~Ta
N before a steady-state is established) may affect the stability properties of
o
e the system.
The model geometry is shown in Fig. 3.1. Two homogeneous layers of
A A
i density p, and p; (p2 > p1) lie adjacent to a coastal barrier. The origin of
e . . . . .
NN the coordinate system is chosen to be at the coast with z in the vertical
"ﬁ direction, z in the cross-front direction (positive onshore) and y in the
!__ alongfront direction. The entire system is rotating about the z-axis with
“~
- an angular frequency f/2 where f is the Coriolis parameter. The layer
}l . . » ]
‘:.:E thicknesses are denoted by h; and h;, while the bottom topography, which is
v an arbitrary function of z but assumed uniform in y, is given by H = h;+h,.
‘ 7 The sea surface elevation is denoted by ¢,. The surface front, modelled
.a:':: as the interface between the layers of different densities, lies parallel to
:.:’,'( the coast at the point z; (z; < 0), offshore of the coastal barrier. The
N
K i: sloping interface and bottom adjoin a flat-bottom region (representing the
) deep ocean offshore of the continental margin) with constant layer depths
I-’_". (H1,H,) far removed from the surface front. A basic state alongfront flow
o (v) which is uniform in y, independent of time (t) and in geostrophic balance
:Z':;Z: exists in the upper layer (Fig. 3.1b). For simplicity there is no basic state
.
°® flow in the lower layer.
:J'RC:: Before stating the governing equations, the field variables can be nondi-
vy mensionalized as follows (e.g. Killworth et al., 1984):
n-;’ (I., y.) = R(-‘C,y),
::' (ul.svl.)uz.)vﬂ.) = (ngl)llz(ulsvluz’v2)a
P t. = [t
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Figure 3.1: (a) Model geometry (symbols defined in text) and (b) upper
layer basic state flow.
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(hl.»hz.) Hl(hlahZ))
gl. - 6H1§1.

The variables subscripted with an asterisk are dimensional and the velocity

(u cross-front, v alongfront) subscripts indicate either the upper or lower

layer. Horizontal length is scaled by the internal Rossby radius of defor-

mation, R = (¢'H,)'/?/f, where the reduced acceleration due to gravity

is given by ¢' = g(p2 — p1)/p2 = g6. Note that the density defect, &, is

much less than one. For typical coastal upwelling fronts R ~ 5 — 10 km.
Velocities are nondimensionalized by the internal gravity wave phase speed,
(¢'H;)'/?, which is typically 50 — 100 cm s™!. Time is scaled by f~!. Note
that the sea surface elevation and layer depths are scaled such that their
nondimensional versions are of the same order.

The nondimensional, two-layer, inviscid shallow water equations are,

using subscripts to denote partial differentiation,

Du
Ttl. —v = —S‘l’, (3.13)
Dv
Ttl +uy = —§1,, (3'1b)
ha+ [un (hy +66,)] + [oa (R + 6§,)]v =0 (3.1c)
for the upper layer and D
u
th — vy = —gT,’ (3.23.)
Dv
7: +uz = —Cr,» (3.2b)
= hy, + (uzha)z + (vah2)y, =0 (3.2¢)

for the lower layer where

St = (1_6)§1 —h
26
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is essentially the lower layer “pressure”. Here

b%—"— %‘F“.’%‘f‘(],’% (33)
where ¢ = 1,2. Linearized bottom friction terms will be included in the
latter part of chapter 5.

To simplify the numerical solution technique the geostrophic momentum
approzimation (Hoskins, 1975 and Hoskins and Bretherton, 1972) is made.

Specifically, the approximation will make the governing equations linear

|
;
3
P!
1
g
!
|

in the eigenvalue making the system easier to solve numerically. The ap-
proximation consists of replacing the fluid velocities (or momentum, hence
the name) by their geostrophic values when acted upon by the substantial
derivative given by (3.3). Specifically, the following substitutions are made:

Du, _ 8u.~, tu aui, .aui,

Dt at 3 "

Dv.- 6v.~, 8v.-, av.'.

Dt~ Yo TV
where ¢ again denotes either layer one or two and

ul. = —gl’ [}
Y, = gl, ’
uz. = —gr, ’
v2, = gT-

are the geostrophic layer velocities. It is important to retain the full advect-
ing velocities (geostrophic and ageostrophic) in (3.3). According to Hoskins
(1975), the approximation is valid when the magnitude of the time rate of
change of the velocity vector is small compared with the magnitude of the
Coriolis force, or, dimensionally,

Dv,

D¢,
Hoskins (1975) and Hoskins and Bretherton (1972) have shown that the

approximation works well in frontal regions with large horizontal shear

< |fus|
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1 provided the curvature vorticity (the turning of the flow along a streamline)
‘::'\':: is not large.

-:j Another way to develop the geostrophic momentum approximation is
t’_) to substitute for the velocities acted upon by the substantial derivative in

- -’_\:'. (3.1a) and (3.1b) from the velocities in the Coriolis terms in (3.1b) and
;: (3.1a) to obtain
% v v=¢, - Dgl, _ Dzvl, (3.4a)

- : Dt De?

2

::, The lower layer equations (3.2) can be treated in a similar manner. The
b geostrophic momentum approximation is then obtained by neglecting the
! last term in each of the two equations. That is
e D*vy
: Dz <Y
-,- and Diu, <
s Dt?

‘-, While these inequalities may fail locally somewhere in the fluid, this study is
":.';f concerned with analyzing the global behavior of the system. The stable and
unstable (if present) waves represent global solutions and their properties

:-'_’.': can be obtained with this approximate set of equations. Confidence in

"'.; the geostrophic momentum approximation comes from direct comparison
‘ ?; to the shallow water equation model of Killworth et al. (1984) and the
',' successful frontal studies of Hoskins and Bretherton (1972 and a series of
:E:?: later papers).

:_-?: Rather than relying on some Lagrangian time scale for the rate of change
o of the velocity vector being longer than f~! as Hoskins (1975) suggests, it
.. is useful to reexamine the ratios of terms in (3.4). Since most fronts are
';r S long in one direction and short in the other, the coordinate parallel to the
‘l'. surface front will be rescaled as y, = (R/e)y where ¢ <« 1. This small
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':::l parameter will turn out to be I, where [ is the alongfront wavenumber.
:’:j:; With this scaling (3.4) becomes
-"-‘d'
Ve D 2
A n=¢ —& §1,_€,Dv1’
: Dt Dt?
A
o D D?*u
AN Uy =—¢, — S, —¢ 21.
- v Dt Dt i
L At lowest order, the flow is geostrophic in the alongfront direction. The i
0(1) equations have been called “semi-geostrophic” (Pedlosky, 1986). In
-
e order to obtain results at higher wavenumbers (shorter alongfront scales)
O
NN it is necessary to include terms of O(e?). The geostrophic momentum ap-
-'.'-" . . 3 L)
Ns proximation includes the term Dg,, /Dt in the alongfront momentum bal-
g ance, but arbitrarily neglects the final terms in each of the two equations.
p - The geostrophic momentum approximation will allow results to be found
- q
L :'_ﬁ' at high wavenumbers, but may be suspect because of this arbitrary trun-
P,
o cation of the 0(e?) equations. In this study, reliable results are found at ’
f, all wavenumbers for a flow with uniform basic state potential vorticity in
::f the upper layer. As discussed further in section 5.3, the geostrophic mo-
"o * 3 . . . .
,z mentum approximation fails to accurately predict the growth rate of high
:' wavenumber unstable modes when the flow field has an interior point where
s the absolute vorticity (f + ¥.) vanishes. However, it will turn out that the
j' f-‘_: properties of the fastest growing modes on all the model fronts studied here
-E" are accurately predicted using the geostrophic momentum approximation.
o In any case, this approximation should be used with caution due to the
® arbitrary way in which it is “derived” from the shallow water equations.
AN \ .
L The geostrophic momentum equations belong to the set of so-called
,':::'.f “intermediate” approximations because they include physics simpler than
: o included in the shallow water equations but more complete than in the
o. quasi-geostrophic equations. In particular, they retain the ageostrophic
T4
R advection of the geostrophic velocity field and can thus be used in regions
"’;'-’,' of large horizontal shear. The geostrophic momentum approximation relies
%
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on low frequencies so, as a result, gravity waves are filtered out of the

system. To reiterate, the desire to make this approximation stems solely

from the simplification it provides to the numerical solution technique.

From (3.4) under the geostrophic momentum approximation, the two-
layer momentum equations are

Dg
Dtl’ tu=¢,, (3.5a)
D¢
Dtl' + u; = —gl,’ (3.5b)
hl‘ + [ul (hl + 6§1)]z + [vl (hq + 6;1)]" =0 (35C)
for the upper layer and
D¢
DtT' +vg=—¢p, (3.62)
D¢
D—:" + u; = —S'T’, (36b)
- hl‘ + (u:hg), + (vzhz)v =0 (36(:)

for the lower layer where D/Dt is again given by (3.3).

As is traditional in linear instability theory the nondimensional field
variables are expanded into a basic state (denoted by an overbar) and a
perturbation (primed quantities). For the upper layer

hl(z Y,
¢, (=,
ui(z,y,

vl(z v,

and for the lower layer

hz (x
z,

S
u(
vz(z

) =
t) =
) =
t)

Y, t)
y,t)
z,y,t)
yWht)

(1

__6)71—1(3) - glz( ,y,t)
gl(z) + gl( Yy, )

uy (2,9, ),

v(z) + v’1 (z

hi(z) + ¢z vt
Sr(z) + ¢r(z, vt

“'z(z Y,
vy(z, v,

yUht)

)
)
0,
!

-
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Note that mean flow only exists in the upper layer. The basic state is

uniform alongshore, independent of time and in geostrophic balance
v = ?l-‘ = hlz' (3.7)

Substituting these expressions into (3.5) and (3.6), linearizing about the
basic state and dropping primes, the geostrophic momentum equations for

the perturbations become

€1, TS, tv1=¢, (3.8a)
Cra 76, + (1 +0)ur = —¢, (3.8b)
= $1, + (1h)e + [vahe + 9(S, — $y)]y = O (3.8¢)
for the upper layer and
$r,, tV2=¢r,» (3.9a)
$r,, tuz2=—Cp, (3.9b)
S, + (u2ha)z + (v2ha)y =0 (3.9¢)

for the lower layer where now

Sr = (1 - 6)(1 +<a- (3-10)

Note that in (3.8c) terms of 0(5) have also been ignored. While these
equations will eventually be solved numerically for a variety of specific basic
state flows, it is useful to examine them first to see if any general statements
can be established. In the next chapter, conservation statements for several
properties of the system are derived. These lead to general stability criteria
which can be applied to systems governed by (3.8)-(3.10).
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- . (3 K
“ Conservation Statements and a Stability
oad Theorem
e )
A
N
I:’I:
"v'.\
B - .
' 4.1 Introduction
o
-t While the existence of unstable waves on a particular basic state flow can
z " be determined numerically, it would be advantageous to have a general set
o of criteria for determining a prsors whether that configuration is favorable
oAc for the growth of unstable disturbances. In this chapter, such criteria are
jf-'.:‘.: developed through the use of global conservation statements for energy,
;:_'3." momentum and potential vorticity. Most of the detailed derivations are
o contained in Appendix A. These conservation statements are also useful
J in the dynamical interpretation of the instability mechanism, since they
Sl Ve
‘.‘::'.( help to elucidate the details of energy transfer in the system. It will also
s be interesting to point out how the form of the conservation statements
} o
N derived using the geostrophic momentum equations differs from its quasi-
o geostrophic equivalent. While the details of the geostrophic momentum
R ,-',j formulation differ from the full shallow water development, all the essential
",
e differences between the latter and quasi-geostrophic theory are retained in
N q
14 the approximate set used here. Before developing the set of conservation
"'; statements, it should be mentioned that much of the present development
'
-% parallels the work of Hayashi and Young (1987) (hereafter HY) on a one-
s
".'-
o
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layer, reduced gravity, two-front model on an equatorial f-plane.

4.2 Conservation Statements

From the full nonlinear, geostrophic momentum equations (i.e. before ex-
panding in a basic state and a perturbation), (3.5) and (3.6), one can

develop conservation statements for potential vorticity in the upper layer

%qtl o0, (4.1a)
where 146, 6y, - ¢i., + $1,.51,,
o - (4.1b)
and in the lower layer
PD%,_ -0, (4.2a)
where e 1+¢n, +6p - Sty ST, S'ru. (4.2b)

ha
(See Appendix A for details.) Again, D/Dt is given by (3.3) and contains
the full advecting velocities. These definitions of potential vorticity are
identifiable with the traditional shallow water forms. One difference is that
the advected relative vorticity has been replaced with its geostrophic value,
consistent with the derivation of the momentum equations in the previous
chapter. The extra terms in the numerators of (4.1b) and (4.2b) contribute
an ageostrophic component to the potential vorticity.
Similarly, an expression for the conservation of energy is

%% =0, (4.3&)
where )
E=c[[m(ch+61) +ha(ch +¢h) +hllda.  (430)
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fj The integral is defined over the whole domain of the fluid in the z—direction

::,“:.': and over one wavelength in the y-direction. Again note the geostrophic

; -'r..\.:: form of the kinetic energies. Finally, an expression for absolute y-momentum
V) is oM

-" 5 =0 (4.4a)

:.- where

o~ M= / [h1 (5., + ) + ke (s, + 2)] da. (4.4b)

N The terms in the integrand of (4.4b) proportional to z arise because the

:;:'.; system is in a rotating reference frame and they represent the momentum
:3;: due to the Coriolis force. The Coriolis terms are absent in the definition

of energy (4.3b) because the force acts in a direction perpendicular to the
motion and thus does not contribute to the work done on a water parcel.

Th NS
_A.}./‘ ‘

The expressions for ¢;,¢2, £ and M can be expanded into a basic state

iy
~‘.-:‘_: and a perturbation as described in the previous chapter. The potential
S vorticity becomes
oy Q= Ql(z) + q'l(xv yat), (453)
LY
- where 1
¥ ‘-:." _ + U,
o Qi(z) = T (4.5b)
. represents the basic state and
.a::'a
b S, T(1+7:)¢,,, @l —¢
2 (2 9,t) = L) s
oy 1
® is the perturbation potential vorticity. Q; has the same form as in the
U
o shallow water equations while ¢ has the additional term VS, /h1. For
W3
‘ :(,- the lower layer
-:-;: q = Q2 (z) + q;(z! y:t)’ (463)
3. where )
':'.:: Qz(z) = = (4.6b)
o ha
J'.'-
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Since there is no basic state flow in the lower layer, the basic state poten-

02(z,y,t) (4.6¢)

tial vorticity there is governed solely by the change in layer depth. The
linearized forms of (4.1a) and (4.2a) for the perturbation potential vortici-
ties are

a1, +9q, +11Q1, =0, (4.7)

g, +u2Q,;, =0 (4.8)

where primes have been dropped.

The expansion of the energy conservation statement is slightly more
complicated than that of potential vorticity due to the integration over the
domain of the fluid. The undisturbed upper layer containing the mean
current will occupy the area from z; to —oo in the cross-front direction
(see Fig. 3.1). This can be denoted by [4,( )dA where the capital A
represents the undisturbed area of the upper layer. A disturbance in the
fluid will move the front to a position ;4 ¢ where € < 1 for small amplitude,
linear theory. This extra area now occupied by the disturbed upper layer
can be denoted by [***( ) da'. Note that this area will be an 0(¢) quantity.

zy
In other words, the area integral is expanded as

/”( )da=/_;( )dA+L’( )da'.

-0

The expansion of E can now proceed paying attention to the expansion of
the fluid area at the same time.
The full energy (4.3b) can be written as

E = Eq + E, + E;3 + higher order terms, (4.92)

where

Eo= [ (R +7) da (4.9b)
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-’:E is the “basic state” energy, .
::E E, = / [h‘_lvgl, - %i’-zgz - h_1§2] dA :
' - + %/ﬁz (h—l ~ g,) da (4.9¢) ¥
is the “mean” energy (really the energy associated with the wave-mean :
= flow interaction) and A
o E; = % [ (eh +6%) - 296,60 +Fa (ch +3,) +¢3]dA4 (4.99)
": is the “wave” energy where primes have been dropped from perturbation :
E" quantities. Note that both E; and E, have 0(e?) energy contributions. .

::.r The O(e?) terms in E; can arise from both the second integral [because
' it spans an area O(¢) wide] and from the O(¢?) parts of ¢, and ¢, in the :
:f. first integral. Note that in the quasi-geostrophic limit, the second integral
,3 in (4.9c) vanishes (because the front can not surface) so the only O(e?) .
:'.'_' contributions to F; must come from the first integral. ]
- The definition of E; contains the kinetic energy (in its geostrophic form) .
~ of the two layers and the potential energy due to the displacement of the N
E: interface. In addition, there is another term —v¢, ¢, which is not pos- '

::: itive definite. This term represents the correlation between geostrophic
h) alongfront perturbation velocity (¢,, = v1,) and perturbation interface dis- ,
- placement. For this term to be negative the correlation must be such that 3
:Z:j the disturbance increases the total upper layer thickness where it decreases :‘-
f the total alongfront speed. This pattern is illustrated in Fig. 4.1. This term i
: is not present in the definition of wave energy in quasi-geostrophic theory =
2B because deviations of the interface from its basic state constant value are N
§ assumed small. In the quasi-geostrophic case, the wave energy is always ‘
o, positive definite. X
Since Ey does not change with time (4.32) can be written as p

o o(E Lr 2 :f Es) o, (4.10)
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.'“ Figure 4.1: Correlation between geostrophic alongfront perturbation veloc- )
g ity (vj, = ¢},) and perturbation interface displacement (¢}) which results

in a negative contribution (the boxed expression at the bottom of the fig-

'j:f:j ure) to the unstable wave energy (E;) defined in (4.9d). The basic state X
:'::-: flow (v) is toward —y in an unperturbed layer of depth h;. The sense of )

the correlation is such that the unstable wave increases the total alongfront

r geostrophic speed (|vy,| = [U+ v} |) where it decreases the total layer depth

Sj (h1 = Ry —¢}) and vice versa.
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(" where terms of O(¢’) and higher have been neglected. This statement is
:::: true for both stable and unstable disturbances. The following discussion
NS
": is restricted to the case of an unstable disturbance. If this is integrated in
v time from some initial state when there is no unstable disturbance present
:;: then
:.j E,+E,=¢e=0.
o
- The disturbance energy, e, is the energy in the disturbed system due to both
‘ the wave (E;) and the modification of the mean flow (E;). This allows for
' :'-j' three limiting possibilities of energy distribution in the disturbance between
" the wave itself and the mean flow modifications associated with it:
.
™ El - —00 Ez — 400
\" E, = 0 E, = 0
i '_. E1 — +o00 E, - —-oo
:Z: Note that the energies going to infinity are in the context of small-amplitude

linear theory so that the true limiting values of the energies are scaled by ¢

> where € < 1. The first case represents the familiar, traditional instability
jf»f process. As the unstable wave grows exponentially its energy increases
" while that of the mean flow decreases. The second two cases arise because
.‘" . - . .

- of the cross-term present in the definition of wave energy which allows for

the possibility of “negative” energy. An unstable wave may grow in the

& system while its energy, as defined by (4.9d), and that of the mean flow,
- as defined by (4.9¢), remain unchanged. HY term this “zero wave energy”
S
x4 instability. It will be demonstrated shortly that this case is relevant to a
: basic state with uniform potential vorticity. In the last case, as the unstable
K : wave grows, its energy becomes increasingly negative while that of the mean
"43’ increases. This has been termed “negative wave energy” instability by HY.
> el

'3 These statements about the transfer of energy within a system con-
-. taining an unstable disturbance are certainly counterintuitive. In quasi-
N . . . . . .

" geostrophic dynamics the basic state flow is always identified as a source of
:"I’

.J
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energy for the growing disturbance. Once the quasi-geostrophic approxi-
mation is abandoned these other forms of instability are possible. HY thus
suggest that the idea of instabilities requiring a source of energy must be
abandoned. These growing waves are possible because the total (mean plus
wave) energy of the fluid is unaltered by the wave and the mean flow mod-
ifications associated with it. Note that even though the wave energy is not
positive definite, which leads to counterintuitive ideas about energy trans-
fer within the system, there still remain positive definite quantities which
must increase with time for an unstable wave. One such quantity is the
potential enstrophy (potential vorticity squared) which is positive definite
and will increase with time as the unstable disturbance fluxes perturbation
potential vorticity down the basic state potential vorticity gradient.

The idea of negative energy instability is not new and is quite familiar
in plasma physics (see Cairns, 1979 for a reference list). Cairns (1979) has
shown that for nonrotating stratified shear flows with step function velocity
and density profiles, stable waves with negative energy can exist in the sense
that exciting them lowers the total energy of the system. Specifically, Cairns
(1979) shows that classic Kelvin-Helmholtz instability can occur because
of the coexistence of positive and negative energy waves. Marinone and
Ripa (1984) have studied large-scale instabilities on an equatorial Gaussian

NI S e NN o e e e D SR R K B P Dt SR ST e TR BLEERE w W % A A A mAm Aa a & A

jet in a one-layer, reduced gravity model which have negative energy. Zero
energy instabilities have been studied by HY and also arise, though not
commented on explicitly, in the work of Griffiths et al. (1982) and Killworth
et al. (1984).

In the classic frontal studies of Orlanski (1968, 1969) only the positive

definite wave energy i

e

L ofre= (. 2 T (2 2 2
Ay Ef =3 / [Fi(ed +¢3) +ha (3, +¢3,) +¢3) da (4.11)
:'. was considered in the energy balance requiring the definition of an “in-
_,
:;‘ teraction kinetic energy” which obscured the interpretation of the energy
N
A
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transfers within the system as outlined here and in HY. The recent work
on frontal models of Griffiths et al. (1982), Killworth and Stern (1982),
Kiilworth (1983) and Killworth et al. (1984) did not thoroughly address
the energetics of the unstable waves and, as in Orlanski’s work, only con-
centrated on the positive definite part of the wave energy (4.11).

In a significant contribution to the understanding of the instability pro-
cess in these counterintuitive cases, HY suggested that the unstable waves
can be thought of as roughly a linear combination of resonating shear modes
each of which would be stable if the other were not present. The two res-
onating waves must have opposite signed disturbance (wave plus mean)
energies so that the unstable mode has zero disturbance energy. The insta-
bility process is then an exchange of energy between the individual wave
modes from the one with negative disturbance energy to the one with pos-
itive disturbance energy. In addition, destabilization by dissipation can be
understood in the same context because it provides a sink for a wave with
negative disturbance energy (Cairns, 1979). That is, the unstable mode
grows as disturbance energy is removed from the mode with negative en-
ergy and lost to dissipation. These ideas will be commented on further
in this chapter and confirmed in the numerical unstable wave solutions of
chapter 5.

The full y-momentum can be expanded in an analogous way to energy
to obtain

M = M, + M, + M; + higher order terms. (4.12a)
Here
Mo = [ [Fi(v+2) + Fyz] a4 (4.12b)
is the basic state momentum,
My = [ [Fig,, - v, +Fagr,] dA +

f [h_1 (+z) + haz — TS, + h_ng’] da (4.12¢)
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is the momentum of the mean flow and

M= [ (¢r, - 61.) 624 (4.12d)

is the wave momentum.

Expressions for the changes in wave energy (4.9d) and momentum (4.12d)
can also be obtained from the linearized perturbation equations (3.8) and
(3.9). The result (derived in Appendix A) for wave energy is

JE
—ét—z - */ [Efl’,uls'h + v’ulg,. + ko (ul' + vl') $1.”
bu;¢, — qulfz] dA
_ %5
_ = (4.13)

The first two terms in the integrand can be recognized as the horizon-
tal Reynolds stresses in their geostrophic momentum form. The third term
represents the vertical Reynolds stress while the fourth term symbolizes the
process of baroclinic instability. This latter process involves the cross-front
flux of interface displacement or, in more physical terms, it is the cross-
front movement of water in the two layers whose net effect is to flatten
out the upwarped interface. As described in Pedlosky (1986) it is anal-
ogous to a slant-wise form of convection or a downgradient flux of heat
in a continuously-stratified fluid. The baroclinic instability mechanism ex-
changes potential energy with the mean flow while the Reynolds stress
terms exchange kinetic energy.

The final term in the integrand of (4.13) is not readily identifiable with
a physical energy conversion process. It can, however, be related to the
changes in time of the displacement of the surface front as detailed in
Appendix A. This term can then be combined with the wave energy on the

o, left-hand-side of (4.13). The final result is
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"'. Since U < 0 the deflection of the front is a positive definite addition to the ‘
:‘ wave energy. Now the change in time of wave energy and the displace- !
.,;:: ment of the surface front due to the wave can be attributed completely _,
&: to the Reynolds stresses acting on the basic state flow and the baroclinic -4
’ conversion of potential energy. '
8 The conservation of wave energy can also be written in terms of the d
:‘.:?- cross-front eddy flux of perturbation potential vorticity. The details are X
‘ contained in Appendix A with the result .',

_")

.: aE’ fh1 Vui1qi dA + ——/h,vgllgl dA (4.15)

:'_' where E; is given by (4.9d) and g, by (4.5c). The final term on the right- :'
; :_: hand-side arises solely due to the geostrophic momentum approximation. 3
:. ;: While E; is the exact geostrophic form of the wave energy, ¢; contains the 7
' . geostrophic form of potential vorticity plus an extra term related to part ».;
.-_-_f of the ageostrophic potential vorticity. The integral in the final term in i
(4.15) can thus be related to part of the ageostrophic wave energy. To ‘
:l::: get an expression relating the time rate-of-change of wave energy to the

D flux of perturbation potential vorticity alone [without the extra term in >
::j: (4.15)], the full form of the energy (geostrophic and ageostrophic) must be

::_:: included in E,;. The resolution of this disparity between the shallow water

.-\ form of the conservation of wave energy and the expression derived using )
Q the geostrophic momentum approximation is detailed in Appendix A. The '
o final result is !
i aE’ /hlz'ﬁulql dA, (4.16) '
AN where the star (x) denotes the full (geostrophic plus ageostrophic) wave 7
._ energy defined by

o / [Ra(ul + v}) — 20016, + ha(uj + v3) + ¢3]d4 E
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o and ¢, remains given by (4.5c). The energy equation (4.13) can also be mod-
oo N
, j;:‘:, ified to express the conservation of total energy by including the Reynolds
N" stresses due to the ageostrophic part of the velocity field. :
,5' The flux of perturbation potential vorticity in (4.16) can be related to
Z ‘:: the dispersion of particles within a basic state potential vorticity gradient.
1R
oy Using (4.7) and substituting
™,
&4
a a
= —+7— , 4.17
N “ (at + 8y) n (4.17)
x
| 3:: where 7, is the displacement of particles in the upper layer, the conservation
K _(: of potential vorticity can be written as :
I. N \
- 0 7]
NN — 4+ T— = 0. 4.18
7 (at + ay) (r +mQy,) (4.18)
:::-'_ If this expression is integrated with ¢, assumed initially to be zero, then )
- @ = —mQy,. (4.19)
‘;;f Substituting (4.17) and (4.19) into (4.16) one obtains
" :" oE; 0 [
: =—=|h'D 1/2) dA. 4.20
o2 = —= [ R'0u.(n}/2) (4.20)
Al .
“‘-; Clearly if the basic state potential vorticity is uniform (Q,, = 0) then EJ ‘
-_.:j will not change with time. Integrating (4.20) with respect to time gives E} :
N _
( :r'; equal to a constant and if the initial state contains no disturbance then this X
gl constant must be identically zero. In quasi-geostrophic theory a uniform
e potential vorticity basic state does not satisfy the necessary conditions for
“\‘ . g 3 3 . . . E
0 instability so Ej will always be zero which is in agreement with (4.20).
i By abandoning the restrictions required by quasi-geostrophic theory it has
" been shown previously in this section that an unstable mode may exist if
! 3.:': the total disturbance energy (E} + E3}) is equal to zero. The existence of
:j: this “zero wave energy” mode of instability has been confirmed by Griffiths X
X \,’- 4
O
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2 et al.(1982) and by HY and will be shown to exist for the two-layer coastal

\.- upwelling front model in chapter 6. From (4.20) it is also clear that the

N sign of E; can be determined from the sign of Q;,. For Q;, < O the wave

A‘D energy will be negative as in the study of Marinone and Ripa (1984) and
,“,"_g:.' it can be shown that the one-layer unstable mode of Killworth (1983) is

[ '.r-*'}, also of this type. For @;, > 0 the traditional positive wave energy unstable

NN

o0 mode is recovered.

o Conservation of wave y-momentum derived from the linearized pertur-

‘_‘:':::- bation equations (3.8) and (3.9) (see Appendix A for details) is
o

N oM, —2 —

2 A
® o [ i— —

g E/ [hlgx,gl,, + hz§r,§r,,] dA, (4.21)
where the extra terms arise in an analogous manner to those in (4.15).
'?,_ They can be removed by considering the full y-momentum with the result

{ aM

L 2 / [hl uiqa + hg U2Q2] dA (422)
o
I" where the full (geostrophic plus ageostrophic) wave momentum is defined

b by
._‘_, M; = /(02 —v)¢, dA.

-

;:-E Using (4.17), (4.19) and similar expressions for the lower layer the con-

g servation of wave y~momentum can be related to the flux of perturbation

;'.'" potential vorticity in both layers

v, T

Sy aM; 7

o = 37 ] [P Qu(ni/2) + B2’ Qu,(n}/2)] dA (4.23)

.- It is important to note that an equation like (4.16) relating the change of
. wave energy to the flux of perturbation potential vorticity cannot be written
':: for the positive definite quantity E; given by (4.11). Consequently, the

N time rate-of-change of E} cannot be related to the dispersion of particles
i~
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K " in an unstable wave like in (4.20). This lack of connection between E;
-—;:;:: and particle displacements (a property of unstable waves whose increasing
e N dispersion with time is a fundamental diagnostic of instability) rules out
“A) E} as the correct definition of wave energy. Instead, E; (or E3) is a more
:'_:-: useful measure of energy in a growing wave.
3 '
X \‘I . -
L 4.3 Stability Theorem \
-_:::; Using the conservation of energy and y-momentum statements, a general
:,, stability theorem can be derived. The method employed here is an extension
- of that of Ripa (1983) who developed a theorem for a one-layer, reduced
M s, h
Y gravity model on an equatorial A-plane or sphere. The definitions of E;
.::1 and M, can be combined using an arbitrary constant v
. WS
~ X
'--:\ * " 1
o E; —1M; = 5/ [H (u{ + v:) + hy (u; + v;) - 2(T—v)vi$,+
o~
‘ ¢} — 29vs,] dA. (4.24)
-
; }_‘5 The integrand can be rewritten by completing the square of the terms e
,,\j involving v, and v with the result
\
' E* — nM* = l/ (D)2, (‘7 '7)§z (-h—)l/zv LY ? +
b —_ - _sh 5
- hiul + haud + ¢ - ——=21 dA. .
:. :.; 1 2 2 hl h2
o .
'@ If the last three groups of terms are combined as
A
EN;
) v -—1)? '1’]
-f,:J S'z 1—£—=——"= 4.25
= ’ [ hy ha)’ (4.2
e. the entire integrand will be positive definite if
vy
o -1 +4u<h (4.26)
O
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- for all z where u = h,/h; is the depth ratio. By sctting the arbitrary con-
stant v equal to zero, (4.26) is satisfied if the magnitude of the upper layer

mean flow is everywhere less than the internal gravity wave phase speed

e
DY

((h1)'/* nondimensionally). This type of flow is known as “subcritical”.
With a deep lower layer (4 < 1) allowing 7 to be nonzero allows 7 to be
supercritical somewhere in the flow and still satisfy (4.26). The inclusion
of a finite depth lower layer makes (4.26) very difficult to satisfy for the

frontal flows of interest here.

3

I3

LN

R 'l L . ‘l
e 2 e e

:::: The conservation statements for E; and M;, (4.20) and (4.23), can also
.::: be combined with the use of the same arbitrary constant ~ to yield
R O(E; —M}) 3 [ —2
~ 2 2 2 2
. St S ki 7 AP - 2)-h dA.
& ~ 5 [ 1" @ =1 Qu(13/2) - Ba'4Qu. (n}/2)] da
_, Integrating with respect to time, this becomes
> 4
.:_:u . . —32 ,_ T2
o (Es = vM5) + [ [F2? (0= ) Qu (nd/2) ~Ba"1Qu, (n}/2)] ¢4 = constant
( ~ ~ —
o where the basic state potential vorticity gradients are defined by (4.5b) and
"::I' (4.6b). If each of the three groups of terms in this expression is positive
L _:j: then no increase in wave properties (e.g. energy, particle dispersion) with
: time is allowed. A mixture of positive and negative terms can allow growth
N of the wave amplitude while still satisfying this expression. The first group
F N
f' will be positive if (4.26) is satisfied. That is, even though E; contains
';: the term —¥v;¢, which may make the wave energy negative and v may
;“‘ be chosen so that —yM; will be negative, their linear combination will be
2 positive definite if condition (4.26) holds. Requiring the final two groups of
7}:: terms to be positive leads to the statement of a general stability theorem,
::: viz.:
'8 :
o If there exists any value of 4 such that
G _
x (T-9) +7*u <hy, (4.27a)
N
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(T—7)Q., >0 and (4.27b)

7@z, <0 (4.27¢)

for all z then the flow is stable to infinitesimal perturbations.

These conditions are sufficient to insure stability and (4.27) is essentially
a two-layer version of Ripa’s (1983) theorem. The extension to an arbi-
trary number of layers requires the addition of statements like (4.27c) for
each layer. The stability criteria (4.27) are also similar to those of Long
(1987) for continuously stratified, rotating flows. He finds a restriction on
the vertical scale of the disturbance to which the flow will be stable. This
condition is analogous to (4.27a) if the scale of the disturbance is identified
with the vertical wavelength of a long internal wave in a continuously strat-
ified fluid. In the present study, the vertical scale of the disturbances is set
by the layer depths. In either case, the flow will be stable if the mean flow
is everywhere less than the internal gravity wave phase speed [and (4.27b)
and (4.27c) are satisfied|.

Quasi-geostrophic flows are generally weak (i.e. slow relative to the
internal gravity wave speed) so they easily satisfy (4.27a). The remain-
ing conditions (4.27b) and (4.27c) are just the familiar requirement that
a change in the sign of the basic state potential vorticity gradient exist in
order to get instability. Specifically, (4.27b) is just Fjgrtoft’s (1950) theo-
rem (with v equal to the value of ¥ at the inflection point) or equivalent
to that of Kuo (1949) and Rayleigh (1880) (with ~ outside the range of ¥).
The additional constraint (4.27c) allows the possibility of instability even if
(4.27b) is satisfied by making the change in sign of the basic state potential
vorticity gradient occur between layers.

For the strong flows associated with frontal regions, unstable waves may

still exist even if there is no change in the sign of the basic state potential

!

vorticity gradient. This can occur if the first condition (4.27a) is violated
as discussed above in association with (4.26).
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The stability theorem (4.27) can now be applied to the coastal up-
welling model of interest here by making an explicit choice for hi(z) and
via geostrophy (3.7) fixing the basic state upper layer flow. The choice for
the interface profile is a family of exponentials given by

— v _fl1-—expla(z—z/)] z<z

hl(z) = { 0 r S z (4283)
so that

v(z) = —aexpla(z —z;)| for z < z4. (4.28b)

A uniform potential vorticity basic state will have a = 1.0. For a < 1.0 the
interface is less steeply sloping than the uniform potential vorticity front
(e-folding length greater than 1.0 which in dimensional units is the internal
Rossby radius of deformation) and for @ > 1.0 the front is more steeply
sloping (e-folding length less than R).

For a uniform potential vorticity front (a = 1.0) (4.27b) is automat-
ically satisfied. For a deep lower layer, 4 <« 1 and (4.27c) is automati-
cally satisfied because the lower layer perturbation velocities vanish. For
quasi-geostrophic flow, satisfying (4.27b) would alone be sufficient to in-
sure stability. However, for these ageostrophic models, (4.27a) must also
be satisfied. With (4.28) this condition becomes

[exp(z — z4) + 1]’ < 1 —exp(z — z/)

which is satisfied for all z if ¥ = —1. A one-layer, reduced gravity model
with uniform basic state potential vorticity is thus stable to infinitesimal
perturbations of all scales. This is the same result as that of Paldor (1983)
who used a Rayleigh integral technique applied directly to the governing
equations.

Again, for a model with a deep lower layer, the stability of nonuniform
potential vorticity (a # 1.0) flows can be determined by examining (4.27a)
and (4.27b). Substituting (4.28) into (4.27a) yields

{aexp|a(z — z;)] + 7} <1 —exp|a(z — ;)]
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Examination of this inequality shows that it will only hold for vy = —a and
a < 1. With vy = —a (4.27b) becomes

{expla(z — 2/)] —1} @1, <O.

For a < 1, the upper layer basic state potential vorticity gradient will
be greater than zero and this expression is satisfied for all z. Conversely,
for a > 1, the upper layer basic state potential vorticity gradient will
be less than zero and this inequality will not hold for any z # z;. The
conclusion from this is that for a < 1 or “shallow” interface profiles a
one-layer reduced gravity model is stable. This can also be rationalized by
realizing that a < 1 is the correct limit to recover quasi-geostrophic flow.
For a > 1, or “steep” interface profiles, the one-layer front may be unstable.
This dependence on «a of the stability of the front is in agreement with the
results of Killworth (1983) who analytically solved the governing equations
in a long wave limit by a rather complicated boundary layer analysis.

All the above discussion is relevant to a model with a deep lower layer.
Inspection of (4.27) for a finite lower layer depth shows that no choice of
~ will satisfy all three constraints even for a uniform potential vorticity
basic state. With this basic state and a flat bottom, unstable modes may
exist because both (4.27a) and (4.27¢) are violated. For a basic state with
uniform potential vorticity in the upper layer the bottom topography may
be chosen to satisfy (4.27c). However, the inequality (4.27a) will still not
hold for all z giving the possibility for unstable modes. Note that standard
quasi-geostrophic stability criteria would insure the stability of this flow.
This clearly illustrates the danger in applying stability criteria derived from
quasi-geostrophic theory to frontal configurations.

In summary, the stability theorem derived here (4.27) suggests that the
coastal upwelling front (since it exists in shallow water) may be unstable
no matter what the basic state flow configuration is. In violating sufficient

conditions for stability the flow satisfies necessary conditions for instability.
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N upwelling front and this is done in the next chapter by solving numerically .
¥ . the governing equations (3.8) and (3.9). o4
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- Chapter 5 5
BILE

N

U

N, Results
h.\ i

"'- )

& 5.1 Introduction i
] . .

R The results of chapter 4 suggest that unstable disturbances exist on coastal !
::‘-':‘ upwelling fronts. Violation of the sufficient stability conditions (4.27) does i
S not, however, guarantee the presence of an unstable wave. The purpose !

of this chapter is to prove that growing disturbances do in fact exist on a
o coastal upwelling front by solving the governing equations (3.8) and (3.9)

b numerically. First, the solution technique will be described including a

-‘j detailed look at the various boundary conditions required. Next, results will

- be presented for a model with an inviscid basic state flow and a flat bottom.

C

The particular case of a front with uniform potential vorticity located far
from a coastal barrier can be compared to the results of Killworth et al.

4 »
Laa

‘. A
>
e

-

e (1984). The effects on the properties of the unstable waves produced by
e varying the total depth, the distance to the coastal wall and the shape of
?F_ the interface profile will be discussed. For one standard case, the energy
- transfers in the system will be analyzed in detail and the conservation
-:j:: statements of chapter 4 will be confirmed. The effect of a strongly sloping
~ bottom will be presented in section 5.4. Finally, linearized bottom friction
b2, is included and its influence on the unstable waves discussed.
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5.2 Solution Technique

Instability calculations generally follow one of two traditional methods.
The evolution on an unstable disturbance can be found by solving the gov-
erning equations as an snitial value problem. This usually requires various
transform techniques (Laplace, Fourier) as part of the solution and can be
quite complicated. An alternative approach is to recognize that since the
coefficients of (3.8) and (3.9) depend on z only, solutions may be sought
which are periodic in y. The normal mode form appropriate to this study

using perturbation sea surface elevation as an example is

¢, (z,0,t) = R[¢ (z) expi(ly — ot)] . (5.1)

Here ! is the (real) alongfront wavenumber and both o, the frequency, and
¢, (z), the cross-front amplitude function, are complex. R denotes the real
part of the expression in square brackets. Since ¢ = o, + t0; is complex,
unstable solutions with ¢; > 0 will grow exponentially with time. This
can be seen explicitly by splitting ¢ into its real and imaginary parts and
substituting into (5.1) to get

¢, (zy,t) =R [g’l (z)exps(ly — o,t)] exp(o;t). (5.2)

With o; > O the initial disturbance will grow until the nonlinear terms ne-
glected in the linearized equations (3.8) and (3.9) become large. When this
occurs the linear theory presented here is no longer adequate to describe
the evolution of the unstable waves. Nevertheless, linear theory will suc-
cessfully describe the initial instability process and provide details of the
small amplitude behavior of the unstable waves.

The solution technique proceeds as follows. Substituting (5.1) and sim-
ilar expressions for ¢, and the layer velocities into (3.8) and (3.9) yields

-

(0 =o)lg; +v1=¢,,, (5.3a)

52

i Sofh Sod Sof Gl Sl

SN AR IR




AN SO e = hac At et et at et Mg Sl A AW AN § B Ban Aun BA-Se-hie N ionth ealt Bal Gl Sl Shal ol B B A A Sl AR AU b onag ma g ey o P alli it e e i ol Sl Bk S A0 B o
o y— v}

j
!
.4
;
}

— (0 = 10)¢,, + (1 + U2)u, = —1l¢,, (5.3b)
—i(o = 10)(¢; — ¢7) + (wihy): + tlvshy = 0 (5.3¢)

for the upper layer and
ol¢y + vz = ¢y, (5.4a)
— 10§y, +uz = ~tl¢y, (5.4b)
—10¢p + (uzha)z + tlvahy = 0 (5.4c)
for the lower layer. (Note that the hats " have been dropped.) Next,

the first two equations in (5.3) and (5.4) are used to solve for the layer

velocities
i (0 = 19)g,, — Igy]
1+7, ’

Uy = 5. 53)

b

ot
o

(
v =¢, — (e -, (5.5b)
uz = t(o¢y, —I¢7), (5.6a)
v = Cp, — ol¢y. (5 Gb)
)

These expressions can be substituted into the continuity equations (5.3c

and (5.4¢) to get a single equation for each layer. The result for the upper

layer is

sl
N Ok _

T i [" B (1v + vl,)] ¢ — L+ R (L +3.)¢, + (1+70.)¢
3 v o Tehr o
,. o lglz’ v (1 + vz) gl,
:::‘f 2 _ v:z-}; -
2 [(1 +h)(1+0,) -1+ o +i7z)] ¢, +(1+ u,)g,} (5.7a)
..

The lower layer equation becomes

P A
L A A A

LN
L
ﬁ ha, 1 2 1 lha,
o .t 7, ST, > S i 1 (5.7b)
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These two equations are coupled due to the appearance of ¢, and ¢ in
each. The complex frequency o is the eigenvalue for this problem and only
appears linearly in (5.7). If the geostrophic momentum approximation is
not made the eigenvalue will appear nonlinearly in the shallow water equa-
tion equivalent of (5.7). The numerical solution technique to be described
shortly is greatly simplified by having made the geostrophic momentum
approximation.

Note that the upper layer equation (5.7a) is singular at several points
within the domain of the fluid. Singularities exist where h, = 0 (at the
front, z = z;), where the horizontal shear of the mean flow exactly balances
the Coriolis parameter (1 + ¥, = 0) and at a “critical layer” where the
phase speed of the wave equals the mean flow speed (o = [¥ or ¢ = ¥ with
¢ = o/l being the wave phase speed). These singularities make the analytic
solution of (5.7) [and the reduced gravity version of (5.7a)] very difficult.
Progress can only be made using various approximations such as assuming
long waves [Killworth (1983) for a reduced gravity shallow water equation
model], nearly uniform potential vorticity [Kubokawa (1985) again for a
one-layer model] or long waves and deep lower layers [Killworth et al. (1984)
for a two-layer isolated front]. In all cases the mathematics required are
quite complicated and involve careful matching of solutions across various
boundary layers. In the two-layer case these analytic solution techniques
fail when the bottom topography differs from a flat bottom.

Since little progress can be made analytically on the system (5.7) a
numerical solution technique is desirable. It should be mentioned that nu-
merical solution techniques are not infallible. Problems will arise when the
growth rate of the unstable waves approaches zero. Nevertheless, the so-
lution technique described next will yield useful results away from these
points. The coupled layer equations can be cast in the form of an algebraic
eigenvalue problem by splitting the cross-front domain into finite intervals
and approximating the derivatives in (5.7) by finite differences. The prob-
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! o where 4 and B are matrices containing the finite difference equivalents of
,-“,,- -] N
o the derivatives in (5.7) and 7 is the column vector defined as f
'.j::: ( S'; )
. ¢
._..4-_‘ .
J_.
e .
l',-. .
i L-1 Az
AR 1
iy L
..‘. gl
)
1 1
o T
e St
.ﬁ: 2 = . .
( .
3 ¢kt
‘o T
N $a
194 -, ] h
2 .
> A
o - :
.,':-. gN—l
A k TN )
"::“. St 3
S . . $
o In the definition of 7 the superscripts on ¢} and ¢% denote the values of
, " these variables at the sth grid point in z. The z-domain runs from ¢ = 1
- at z = —oo (in the numerically truncated domain 1 = 1 corresponds to a
" location several Rossby radii from the front), through s = L, which denotes
. the location of the surface front, to ¢ = N at the coastal barrier. Note that
‘,‘::' ¢, only exists from 1 = 1 to ¢ = L while ¢ is defined at every point in the p
',’.__ numerical domain. Since (5.8) contains both the coupled layer equations §
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simultaneously, A and B are (N + L) x (N + L) in size. Another property
of (5.8) is that :and };are real so that (5.8) is a real algebraic eigenvalue
problem of gen:ra.l forgr’n. The eigenvalues (0) and eigenfunctions (7) can
be found numerically by using, for example, a QZ algorithm. The solNutions
presented here were found using the IMSL (International Math Subroutine
Library) routine EIGZF.

In setting up the finite difference grid in the z-direction several choices
must be made concerning the number of points, the size of the interval
between grid points and how far away from the surface front the model will
extend. The distance between grid points was chosen to be 0.06 Rossby radii
(R) so that for a front with uniform basic state potential vorticity 16 points
would lie within an e-folding length of the surface front. The numerical
domain was chosen to extend 4 R from the surface front. Reducing the
interval between grid points to 0.04 R or increasing the distance of the edge
of the numerical domain from the front resulted in less than 0.5% change in
the eigenvalue 0. Results produced with a coarser grid or a smaller domain
were generally not reliable. For a typical model configuration with the
surface front lying 2 R from the coastal barrier, the number of points (N)
was 93 with L = 61. This made A and B 154 x 154 and execution time on
a DEC (Digital Equipment Corporatlon) MicroVAX II was approximately
18 CPU minutes.

The two second order, ordinary differential equations (5.7) require four
boundary conditions to specify a unique solution. The development and
numerical application of the necessary boundary conditions are detailed
below. The difference in the form of the boundary conditions for both an
isolated front over a flat bottom (Fig. 5.1a) and a front next to a coastal
barrier with arbitrary bottom topography (Fig. 5.1b) will be discussed.
Note that since the logical reference point in the cross-front direction for
the isolated front (Fig. 5.1a) is the point where the front intersects the
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Figure 5.1: Pictorial representation of the boundary conditions for (a) an
isolated front, where the origin of the coordinate system is located at the
surface front, and (b) a front over arbitrary cross-shelf bottom topography
next to a coastal barrier.
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surface, the origin of the coordinate system has been placed there. The
solutions given below can be tailored to this case by setting z; = 0. One
general requirement is that the solutions to (5.7) be frontally-trapped. Far
from the surface front in the two-layer region of the z-domain (z — —o0)
the interface becomes flat. In addition, this region is assumed to have a flat
bottom (Fig. 5.1). The governing equations (5.7) reduce to a coupled pair
of constant coefficient ordinary differential equations which can be solved

analytically. The solutions which satisfy the boundary conditions

$1psr—0 as z — —00

T are

.' ¢, = crexp[ri(z — zy)] + caexp[ra(z — z/)]

i H
‘\"2 Sr= ——H—;clexp (ri(z — z5)] + caexp [r2(z — z/)]
by,

};- where ¢; and ¢, are arbitrary constants, H, and H; are the constant layer

4
N depths (see Fig. 3.1),
Hy + H\'?
o (4 Bt )
H,H,

is an inverse decay scale containing the two-layer form of the internal Rossby
radius of deformation and
rg =1

is an inverse decay scale based on the alongfront wavenumber. The con-
stants ¢; and ¢; can be eliminated by requiring continuity of ¢, and ¢, at
the edge of the numerical domain (¢ = 1). Finally, the boundary condi-
tions may be incorporated into the numerical scheme using standard finite
difference techniques.

On the one-layer side of the front, one of two boundary conditions is
required. For an isolated front far from any coastal barrier (Fig. 5.1a) the

solution must satisfy

Sr—0 as z — +o00.
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In this case the simplest model geometry is one with a flat bottom and an
analytic solution to (5.7b) can be found which satisfies the above boundary
condition. The solution for £ > 0 where, as noted above, the z-origin is
now assumed to lie at the surface front (z; = 0) is

¢} = ecsexp(—az) (5.9)

where

6
2.2
(] l +lr

This solution can be used to match to the two-layer region at £ = 0 by
requiring continuity of sea surface elevation and normal velocity between
the lower (z < 0) layer and the single (z > 0) layer. Continuity of sea
surface elevation

1 =7
can be expanded in a Taylor series about the unperturbed frontal location
(z = 0). Keeping only the first two terms in the expansion yields
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where the overbar represents a mean quantity and ¢ is a small displacement
of the front. Since ¢; = 0 at z = 0 by definition and g_;. = ¥ this becomes
to O(e)

.
A4

¢ +ve=¢T at z=0.

WS
A
A

At the perturbed frontal position (z = €) the total upper layer depth van-

ishes

r_»
AL

hi+6¢, =0 at z=¢

B SR S R

\-11.

This can be expanded in a Taylor series to get an expression valid at the

undisturbed frontal location
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Since hy = ¢; = 0 at z = 0 and hy,

expression

¢y, = U this reduces to the 0(e)

(7 - ¢7) = —ve. (5.10)

Combining the above two expressions yields
¢t — (67 —¢7) =¢1

or
St =¢7 at z=0.

On the one-layer side of the surface front, ¢} is just equal to ¢}, so this

boundary condition becomes
$r =¢F at z=0. (5.11)

Continuity of normal velocity can be expanded in the same manner to give
at O(e)

Uy = U at =0

or using (5.6a)
o¢t, — 7 = 0§, — I$T.
Combining this expression with (5.11) yields the final boundary condition
for ¢,
S, = ST at z=0. (5.12)

The right-hand-side can be obtained by differentiating (5.9). This matching
condition can now be incorporated into the numerical scheme by approxi-
mating ¢z by a finite difference.

The above discussion was for an isolated front. This type of model is
relevant to many oceanic fronts and was the subject of the work of Killworth

et al. (1984). The emphasis of this study is the coastal upwelling front
which requires a coastal barrier for its existence. Further, coastal upwelling

fronts often occur over bottom topcgraphies which are not flat (Fig. 5.1b).
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N These features require a different treatment of the boundary conditions in .
- the single-layer region (z > z;). The origin of the coordinate system has tj
¥ '. . . f
' returned to the coastal wall as defined in Fig. 5.1b. Note that the boundary e
. conditions as £ — —oo remain the same for either model. The boundary =3
:: condition at z = 0 is no flow through the coastal barrier <3
‘ ', '~ f
- uf =0 <4
% or using (5.6a) -

osT, = IST- (5.13)

‘ll. .l :

SRA)

For a flat bottom the solution to (5.7b) which satisfies (5.13) can again
be found analytically and matched onto the two-layer region as outlined

“»
P

above. Another approach is to extend the numerical domain through the
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t
3

front all the way to the coastal barrier and to apply (5.13) at z = 0 using

o« 4 s
-

.-
- e e .

s standard finite difference techniques. This method automatically satisfies -
{ continuity of properties across z = z; and has the advantage of allowing "
- solutions for bottom topographies which are not flat. This latter approach ::
) is used in the numerical solutions presented here. o
_ The final boundary condition required to specify the problem uniquely E
is applied to the upper layer equation at the front. It was noted previously

: that the governing equation (5.7a) was singular at £ = z; so one way to N
‘,‘;: express the boundary condition is that ¢, remain finite at the front. This )
‘ ::7 qualitative condition must be made quantitative in order to implement it in X
; a numerical scheme. This is done by realizing that the surface front must ;
f.{ be a material surface. This can be expressed mathematically as PN

ol ‘.' d
¥ S le(zr+) =0 _
@ or R
(%+u;%+’ﬁ%+w%) [z—-(zs+¢)]=0 (5.14) E*
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where again ¢ is the small displacement of the surface front from its equi-

librium position at £ = z;. By definition
dz
v = —

dt
o (5.14) becomes

AN a+v O ) (z;+¢) =o.
Uu; — at+u18z ay 1 zy €

This can be expanded in a Taylor series about the unperturbed frontal
location and linearized to O(e) to obtain

a d
uy — (at+65—)e—-0 at z = z4.

Assuming the perturbation frontal displacement (¢) has normal mode form
as in (5.1) this becomes

uy+i(c—0)e=0 at z =1z

Again using the O(¢) version of vanishing layer depth (5.10) and dropping
the minus superscript this can be written as

i(o = 19)($r - ¢,)

u; + =0 at z=1z.
1 - !

Substituting u; from (5.5a) this boundary condition becomes

v
56y, = (L+2)6y + (L4+0:)gr = — [56), = a6y + (1+7:)¢]

at Tr=zx. 5.15
b4

This boundary condition derived from assuming that the surface front
is a material surface is ezactly the same as the governing equation (5.7a)
expressed at z = z; where h; = 0. That this derivation based on physi-

cal reasoning reduces to the governing equation suggests that, even though
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| this is a singular point, the upper layer equation should remain regular
‘ and ¢, should be well behaved at the front. The redundancy between the

boundary condition and the governing equation leads to difficulties in an

analytic attempt to solve (5.7a). Previous studies [e.g. Killworth (1983);
Killworth et al. (1984)] avoid this difficulty by using an integral solution
technique which accommodates the regularity at the front rather than ex-
plicitly applying a boundary condition there. In the numerical solution
technique used here the expression (5.15) is simply finite differenced to the

same accuracy as the rest of the numerical domain and evaluated at the

front. Results indicate that this works well.
iy One final consideration is the special case of a uniform potential vorticity
—3 basic state flow. From (4.5b) uniform potential vorticity requires 1+ o, = 0
0 at the front so (5.15) becomes
Nl
o (0 —19)¢, =g, at  z=uz,. (5.16)
N H
This boundary condition is different from the upper layer equation ex-
- pressed at z = z;. This can be demonstrated by writing (5.7a) in terms of
:'::; Q: as defined by (4.5b)
J'__
- Q1 T2 _
glll - Ql gl. - (1 + hll )ngl + ngT -
~ 53] Q Q i
) 1, 1 2
o — - = - + (14 Ayl + 5.17
.::: o {glu Ql gl. [le ( 1 )Ql] g[ ngr} ( )
'~,.. and then setting @, = 1 and Q;, = 0 to obtain
'Y —
¥ (0= 19) [¢,,, ~ (L +Ru%, + ¢7] = 0.
=
5-\. f ¢ # v this can be expressed at £ = z; where hy =0,
o
. gl,, i gl + gT -~ 0. 3
S This expression is clearly different from (5.16). In fact, (5.16) is just the

result of requiring the coefficient of Q,,/Q, to vanish. In other words, ’
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a front with uniform basic state potential vorticity allows the requirement
that the front be a material surface to provide a unique boundary condition
which can be incorporated into the numerical scheme by standard finite
difference techniques.

The actual solution of (5.7) with the appropriate boundary conditions as
detailed above proceeds via (5.8) by first choosing a basic state flow as given
by (4.28). Choices are then made for the offshore distance to the surface
front (z,), bottom topography and/or lower layer depth far offshore (Hj;
see Fig. 3.1). These choices completely specify the basic state and model
geometry. This allows (5.8) to be solved for the complex eigenvalue (o)
and the complex eigenfunctions (7) for a given alongfront wavenumber ({).
The value of / is varied to investi~gate the potential instability of the basic
state to perturbations of a given alongfront scale. The analyses can then

be repeated for different choices of the basic state flow or model geometry.

5.3 Inviscid, Flat-Bottom Model

In this section the solution technique just described is applied to a sim-
ple model geometry consisting of a flat bottom adjacent to a coastal wall
(Fig. 5.2). A surface front lying over a flat bottom is relevant to many geo-
physical phenomena, but it must be remembered that the distinguishing
feature of many coastal upwelling fronts is the presence of strongly slop-
ing bottom topography. This more realistic geometry will be addressed in
the next section. Here, the stability properties of various basic state flows
over a flat bottom will be discussed in detail. Initially a uniform potential
vorticit); basic state flow will be considered followed by a discussion of the
effect of a finite mean potential vorticity gradient.

The choice of the basic state interface profile is motivated by several
considerations. The intent is to select a model state which represents a

fully mature coastal upwelling front. The density and flow structure arises
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from the upwelling process described in chapter 2. Essential to this for-
mation process is an alongshore wind stress. The model developed here
' explicitly leaves out wind stress and considers the stability of a basic state
S which is the end product of an alongshore wind event. Another point is the
-:_::::_: lack of cross-frontal mixing which is likely an important physical process
:_:::.::: in the formation and evolution of a coastal upwelling front (e.g. Garvine,
B 1979a, b, 1980). One obvious way to choose a basic state configuration is
Ve to use observations to specify an interface profile. This may be the most
:: realistic, but can be problematic for several reasons. Subsurface observa-
_\: tions of density, particularly vertical sections perpendicular to the front, are
"':':f often not available for the coastal upwelling front of interest. Even without
.:_..,_ detailed knowledge of the subsurface density structure, it would still be
‘ useful to predict the scales of this variability based on an instability model
-j.f-j'_f whose inputs (e.g. layer depths, density difference between layers) can be
~‘:~: set using historical data or a few hydrographic casts. When observations
- are available, they include smali scale features in density due to mixing, in-
-f—:f ternal waves and mixed layer dynamics. These complicate the specification
of a basic state and may obscure the understanding of the stability of the
_F front to larger scale processes. Finally, observations of subsurface proper-

ties in frontal regions are never truly synoptic which may create problems

..U

»
Y
D

in specifying a correct basic state configuration.

-:::::' Another approach is to consider interface profiles which arise from sim-

::::‘: ple models of the coastal upwelling process. Many such models exist as

briefly reviewed in chapter 2. A particularly simple model is that of

o Csanady (1977) for a flat-bottom two-layer ocean. The upwelling of the

J" - . . .

:‘_ interface due to an alongshore wind stress is developed by considering the

N conservation of potential vorticity in each layer. The resulting interface
i - H

B profile is exponential with an e-folding scale equal to the internal Rossby
o radius of deformation. The upwelled state has uniform potential vortic-

o ity in the two layers as a necessary result of conserving potential vorticity
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throughout the upwelling process. This model oversimplifies the forma-
tion process, but certainly provides a realistic physical explanation for the
shape of a coastal upwelling front. A great number of observational studies
N have suggested that the internal Rossby radius is a relevant decay scale to

N consider. An effort to select a simple, yet physically realistic basic state
jl?:: configuration based on this type of upwelling model led to the selection
of the exponential profiles given by (4.28). Interface profiles evident in

vertical sections of density for many coastal upwelling fronts appear to be
realistically represented by the exponential form employed here. In partic-
\'::'7 ular, a uniform potential vorticity basic state flow in the upper layer will
be considered first. Since no mean flow exists in the lower layer, the po- g
tential vorticity there will be dictated by the change in layer depth. The
BN presence of unstable waves in a system with this distribution of potential
vorticity (i.e. lack of a change in sign of the potential vorticity gradient) e
will distinguish these ageostrophic flows from traditional quasi-geostrophic
{ - dynamics.

I;j:] The stability of this uniform basic state potential vorticity model with ;
oy a flat bottom as sketched in Fig. 5.2 will now be presented. The depth of A
- the upper layer far from the surface front (H, in Fig. 3.1) will be chosen to ¥
®) be always equal to one. Using this, the total depth H = H, + H, can be :
denoted by r so that the lower layer depth is equal to r — 1 (Fig. 5.2). The
stability theorem (4.27) suggests that this basic state will be unstable if

x
N S
Los

AR

the lower layer is sufficiently shallow. The first model geometry considered

LN

f Es n
l{; L}l}(‘ g o

will have equal upper and lower layer depths, r = 2, and the surface front
will be located two Rossby radii from the coastal barrier (z; = —2 R). !

This model geometry with uniform potential vorticity flow will serve as a

e
'y
3

standard case with which to compare the results for models with different ‘

b
KA

°. parameter choices.

o Given the basic state flow and the model geometry, the governing equa- k.
Tl tions (5.7) are solved for a range of alongfront wavenumbers (). The com- ;
° 67
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plex frequency (o), which is the eigenvalue for the problem, yields two
important properties of the unstable wave. The imaginary part of o is the
rate at which the unstabtle wave will grow with time (see 5.2). The growth
rate (o;) is plotted as a function of alongfront wavenumber in Fig. 5.3a. No

unstable modes exist above | = I, ~ 1.50 where 0; = 0. This “short wave

v.' .l “A
" l‘ ‘l ’.
DR N

DDA ;
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cutoff” is related to restricting the vertical shear in the system to occur
'::'.‘:_' across an infinitely thin layer at the interface and is a common feature of
S stability models which use homogeneous fluid layers (Pedlosky, 1986). The

z
sTaTE

wave with the largest growth rate occurs at [ = {,, = 1.05 where o, = 0.09

(the subscript m identifies the maximum growth rate). Within the limits

1]

e ’;' o

Nh

ol of the linear, small amplitude theory presented here, this is the wave most

,{‘ likely to be observed as its amplitude grows most rapidly from an initial
",':-'_ condition containing many wave components. As the disturbance grows to
::_'.::3. finite amplitude, nonlinear effects may alter the properties of the fastest
:\_" growing wave.

' The real part of the eigenvalue (o,) divided by the wavenumber (!)
o yields the phase speed of the unstable wave (¢,). This quantity is plotted
as a function of alongfront wavenumber in Fig. 5.3b. The solid curve for

l < . is for the unstable mode whose growth rate is given in Fig. 5.3a.
The values for ¢, are all negative which correspond to propagation to —y.
A This downstream direction for phase propagation can be anticipated by
:::-’:'. invoking a common guideline for the phase speed of unstable waves. In
'::::j: general, the phase speed of an unstable wave must lie within the range of

; the mean flow speeds. These so-called “semi-circle” theorems have been
e rigorously derived for many layer models of instability both using quasi-

geostrophic dynamics (Pedlosky, 1964) and ageostrophic dynamics (HY). 1
;' Since ¥ is in the —y direction the unstable wave should propagate in the 1
";: j same direction with a phase speed less than the maximum flow speed. This
! -'j result is confirmed in Fig. 5.3b, remembering that maximum flow speed ;
::ﬁ occurs at the front (z = z;) and is equal to —a, which for the uniform y
‘ 2:&3 :
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wavenumber for the unstable mode (I < 1.5, solid curve) and for two stable
modes (/ > 1.5, dashed curves).
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potential vorticity case considered here is equal to —1. At [ = [, the real
part of the phase speed splits into two stable waves (dashed curves) which
for | < I, had been resonating to produce the unstable mode. In addition
to these stable waves, there exist many more stable vorticity modes with
¢, < 0 which are not plotted in Fig. 5.3b.

Before expanding on this idea of resonating modes and taking a look at
the structure of the unstable wave, it is useful to consider the dimensional
properties of the fastest growing wave. The length, time and velocity scales
used for the redimensionalization are defined in the beginning of chapter 3.
To find the wavelength of this mode multiply [} by 2rR. The e-folding
period [the time it takes the perturbation to grow to exp(+1) of its initial
amplitude] is obtained by multiplying o,-‘_‘ by f~!. Finally, the dimensional
phase speed is recovered by multiplying ¢, by Rf. For R = 5 km and
mid-latitudes the fastest growing wave has a wavelength of ~ 30 km, an
e-folding period of ~ 1.5 days and a phase speed toward —y of ~ 3 cm s~!.
This standard model, which has not been tuned to the configuration of a
coastal upwelling front for any particular geographic location, yields spatial
scales for the fastest growing wave which are of the same order as the ob-
served scales of alongfront variability off, for instance, the coast of Oregon
as displayed in Fig. 1.2 (O’Brien et al., 1974). Values for growth rates and
alongfront phase speeds are more difficult to obtain from observations, but
when estimates of these properties are available (e.g. Petrie et al., 1987)
they are comparable to the values predicted by this simple instability model.
To make a more detailed comparison between the model-derived properties
of the fastest growing wave and observations, it is necessary to understand
the effect of varying the basic state flow and model geometry. For example,
the influence of sloping bottom topography beneath the surface front, a
physical characteristic of upwelling fronts in nature, will be investigated.
After a discussion of these effects in the remainder of this chapter, a com-

parison between the model predictions and observed alongfront variability
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will be made in chapter 6.

The structure of the most unstable wave is displayed in Fig. 5.4. Properties
of the upper layer are presented in Fig. 5.4a where the dashed lineat z = —2
represents the surface front. The solid and dashed curves represent contours
of ¢,, the sea surface elevation, whose maximum value occurs at the front
and is normalized to 1.0. This normalization is done because the linear
stability analyses presented here does not allow the amplitude of the un-
stable disturbance to be determined. The perturbation upper layer velocity
field follows from (5.5). For presentation purposes, the velocities are scaled
such that the vector beneath the legend represents one velocity unit. Lower
layer velocities and contours of ¢ [given by (3.10) and is essentially the
lower layer “pressure”| appear in Fig. 5.4b. The normalization and scaling
procedure is identical for the two layers so that comparisons of properties
between them can be made.

All the fields are frontally-trapped with a cross-front e-folding scale of
~ 1 Rossby radius (R). Upper layer velocities exhibit a pattern consistent
with a wavelike deflection of the surface front. If the velocity field were
completely geostrophic the contours of ¢, would serve as streamlines for
the flow. The crossing of ¢, contours by the velocity vectors, especially
near the surface front, is indicative of a significant ageostrophic component
to the velocity field. Velocities in the lower layer are much weaker and more
geostrophic than those in the upper layer. The velocity and ¢, fields form
closed cells with maxima occurring ~ 0.75 R to the two-layer side of the
surface front.

As is apparent from the discussion in chapter 4, the interpretation of en-
ergy transfers within an unstable system can be thought of in two ways. In
traditional instability theory the flow of energy to the unstable disturbance
from the basic state and vice versa can be analyzed. For nondivergent flow
fields instability requires that the sum of the energy conversion must re-
sult in the flow of energy from the basic state to the disturbance [positive
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wave energy (E;) and negative mean energy (E})|. For the flows consid-
ered here it was shown (see chapter 4) that unstable waves can exist even
if the net flow of energy between the basic state and the disturbance is zero
or even when the transfer is from the disturbance to the basic state flow

creating negative wave energy and positive mean energy. These cases are
certainly counterintuitive, but as described in chapter 4 it is not difficult
to find physical systems which can be unstable without the flow of energy
from the basic state to the disturbance (e.g. an inverted pendulum). The
instabilities found here on a uniform basic state potential vorticity flow will
have zero net energy flow between the basic state and disturbance fields (see
4.20). Nevertheless, it still is useful to analyze the energy conversion terms
as described in conjunction with (4.13) to understand the primary physical
mechanism for the instability (e.g. baroclinic or barotropic conversion).
The other interpretation of instability involves the exchange of distur-
bance energies between two resonating stable modes. The unstable mode

PRy

will grow with time keeping its disturbance (mean plus wave) energy equal !
to zero. The flow of energy in this case is between the two stable partners. )
Depending on the basic state configuration, the unstable mode may gain
from, lose to or leave unchanged (as is the case here for a uniform poten-

tial vorticity flow) the energy of the basic state flow. A good description
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. of these ideas can be found in HY. Since both interpretations yield useful :
.j-'.’ information, both will be considered here.
_'f. The contours of ¢, and ¢, provide phase information for the unstable
- mode. The sense of phase tilt in an unstable disturbance is useful in in-
i terpreting the direction and mechanism of energy transfer in the system
'::‘;j (Pedlosky, 1986). In chapter 4 the possibility of conversion of energy via
a0 Reynolds stresses and baroclinic instability was mentioned. The signature
- ,l 3 .
'.‘ * of an unstable wave extracting energy from the basic state potential energy
".5' field via baroclinic instability is that the wave in the upper layer lags the
; :-J’ wave below. This sense of phase tilt, such that the perturbation is “leaning” :
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against the basic state vertical shear, is apparent in Fig. 5.4 and it may be
anticipated that the term on the right-hand-side of (4.13) representing this
process will be positive. The sign of the conversion of kinetic energy via the

horizonta! Reynolds stress is more difficult to determine by just inspecting

-.'__: Fig. 5.4a. The first horizontal Reynolds stress term on the right-hand-side
Ej of (4.13) will be positive (conversion of basic state kinetic energy to the
SN perturbation) if the phase of the perturbation is again leaning against the
i basic state horizontal shear. This is clearly the case in Fig. 5.4a, but the
::Jf-:', presence of the additional term in (4.13) proportional to the horizontal
:_:?, Reynolds stress, but with opposite sign, complicates the interpretation. In
o5 fact, for this uniform basic state potential vorticity case the wave energy
,: should be zero from (4.20), so if the baroclinic conversion is from the basic
.- state flow to the perturbation then the conversion of kinetic energy via the
:'_:E'{ Reynolds stress must be of the opposite sign. A numerical evaluation of
-_‘.'_',-_'. the energy balance presented below does indeed confirm this result.
' . The solutions obtained numerically can be used to calculate explicitly
.::'4 the terms in the energy statements of chapter 4. The following calculations
-*-J/ were performed using the full energy E; including the geostrophic and
"‘ ageostrophic parts. The terms in the definition of wave energy (4.9d) are
Y plotted as a function of cross-front distance in Fig. 5.5. The solid curve
: y is the positive definite sum of the kinetic energy in each layer and the
f:::', potential energy. The long dashed curve is the correlation between v, and
::3:_' interface displacement which results in a negative contribution to the wave
;’ energy. This results because the unstable disturbance decreases the total
-" speed (v; > 0) where it deepens the upper layer [(¢, — ¢;) > 0]. The sum
fC of these positive and negative contributions to the wave energy is plotted
'_’t as the short dashed curve in Fig. 5.5. Its integral over the domain of the
; fluid vanishes, confirming the result that unstable waves on basic state flows
e with uniform potential vorticity have “zero wave energy”.
::',?:‘ The energy conversion terms in (4.13) due to the action of Reynolds
T
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stresses and baroclinic instability are plotted as a function of z in Fig. 5.6.
The values to the right of the figure result from integrating the various

terms over the domain of the fluid. Only the Reynolds stress terms are

plotted in Fig. 5.6a. The first term in the integrand of (4.13) representing

the horizontal Reynolds stress —h,%,u;v; is positive as was inferred from

the examination of the phase tilt in the unstable disturbance. The second

term —v%u,v, is negative and large with the result that the net horizontal
Reynolds stress acts to convert energy from the perturbation to the mean
flow. The vertical Reynolds stress term -—h_lii(ul, + vy, )v; is positive and
the final term in the integrand of (4.13), which earlier had been related to
the deflection of the surface front, is large and negative. The sum of the
Reynolds stress terms plotted in Fig. 5.6a is plotted as the dashed curve
in Fig. 5.6b. The solid curve in Fig. 5.6b repre<ents the baroclinic energy
conversion term, whose integral over the domain of the fluid is positive and
exactly balances the integral of the sum of the other terms. The integrand
in (4.13) can be related to the mean energy E} through the use of {4.10).
Specifically, 0E} /0t = —3E;/8t = [( energy conversion terms ) dA. The
fact that the sum of the terms in the integrand is zero confirms that the
mean energy as well as the wave energy (as illustrated in Fig. 5.5) are
zero for this basic state flow with uniform potential vorticity. The ra-
tio of the magnitude of the baroclinic conversion term to the magnitude
of the Reynolds stress terms [neglecting the contribution from the term,
—UT,u1(¢, — ¢r), which is related to the deflection of the surface front] is
~ 2.6 which indicates that the energy conversion process, although mixed,
is primarily baroclinic.

The results for momentum confirm the signs inferred from (4.23). Even
though @,, = 0, the gradient of the lower layer basic state potential vor-
ticity (Q2) is nonzero and negative. The calculated value for the wave
momentum (M3) from (4.12d) is positive while that of the mean momen-
tum (My), from (4.22) and the fact that IM; /3t = —~9M; /0t is negative.
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These two exactly balance such that the total disturbance (mean plus wave)
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momentum is zero.

The structures of the two stable waves at { = 2.0, which for ! < [, had
been resonating to produce the unstable mode, are presented in Fig. 5.7.
The velocities are again scaled for each wave such that the vector beneath
the legend represents one unit. Both stable waves are frontally-trapped
and have highly ageostrophic velocity fields. The wave with o, = —0.5444
(or ¢, = —0.2722) (Fig. 5.7a) is primarily trapped in the upper layer while
the wave with o, = —0.1155 (or ¢, = —0.0578) (Fig. 5.7b) has comparable
velocity magnitudes in each layer (a more “barotropic” mode). The two
waves have the same sign of phase propagation, but oppositely directed
group velocities (defined by ¢, = do/dl). The wave with o, = —0.5444
has a negative group velocity and thus propagates energy toward —y. The
opposite is true for the other stable wave. When the stable waves have
the identical wavenumber and phase speed they can resonate to produce
the unstable mode. The fact that the stable waves have different energy
propagation directions allows for the transfer of energy between them to
form a growing unstable disturbance. This idea is elaborated on below.

An explicit calculation of the terms in the energy statements of chapter 4
can also be performed on the two stable modes whose alliance results in
the unstable mode analyzed above., The wave with o, = —0.5444 has
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negative disturbance energy while the wave with o, = —0.1155 has positive
disturbance energy. As described above, when these two waves have the

224
L

bt )

same wavenumber and phase speed they can exchange disturbance energies
to form an unstable mode which has zero disturbance energy. Thus, the
unstable mode can grow through a transfer of disturbance energy from one
of its partners to the other.

The previous paragraphs detail the existence of unstable waves on a
uniform basic state potential vorticity flow, confirm the energy statements
of chapter 4 and discuss the mechanisms for their existence. The variety
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of mean flow profiles and layer depths associated with coastal upwelling
fronts found in nature suggests an investigation of the effect of changing
the model parameters. The first parameter to be varied is the distance
from the front to the coastal wall (z;). The maximum growth rate (o,,)
is plotted versus |z;| in units of R in Fig. 5.8. The wavenumber of the
fastest growing wave (l,, = 1.05) does not change appreciably (less than
1%) as |z;| is varied. Moving the front closer to the coastal wall results
in a decrease of the maximum growth rate. This decrease is ~ 34% for
the surface front next to the coastal wall. The growth rate asymptotes to a
constant value as |z;| increases with the choice |z;| = 2.0 R being similar to
the no wall case considered by Killworth et al. (1984). In fact, comparison
of their numerical results (see their Fig. 4) are in excellent agreement with
the results presented in Fig. 5.3a. This agreement also supports the validity
of the geostrophic momentum approximation for this choice of basic state
flows. In summary, maximum growth rates decrease as the surface front is
moved closer than ~ 2 — 3 R from the coastal wall.

Since the theorem (4.27) establishes the stability of a uniform basic state
potential vorticity flow with an infinitely deep lower layer (a reduced grav-
ity model) and the results of this chapter show the existence of a strong
instability (large growth rate) for equal layer depths, a dramatic depen-
dence of the growth curve on lowsr layer depth may be expected. Growth
rate versus alongfront wavenumber with z; = —2.0 R for various values
of r, the nondimensional total depth as defined in Fig. 5.2, is plotted in
Fig. 5.9. Deep lower layers decrease the range of unstable wavenumbers,
shift the fastest growing wave to longer wavelengths (smaller /) and dramat-
ically decrease the growth rate of the fastest growing wave. These results
are similar to those of Killworth et al. (1984) who, in an investigation
concurrent with this study, solved the shallow water equations numerically.
Since the source of energy for the unstable wave is primarily baroclinic, the

decrease in growth rate can be understood in light ol the decreasing over-
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i:E::: all vertical shear of the basic state flow. For continuous stratification and
-\\ velocity the growth rate due to baroclinic instability for a given wavenum-
v ber is limited by the magnitude of the vertical shear (Pedlosky, 1986). An
‘-j::{ analogous statement for layer flows may be established (Pedlosky, 1986)
_-,. using a finite difference form of the vertical shear where Az is the depth of
_‘_ZZ:: the water column even though, in reality, the vertical shear in the system

is concentrated at the interface. As the lower layer depth increases the

: overall vertical shear decreases and the baroclinic energy conversion pro-

::: cess becomes weaker. The absolute stability of the flow with an infinitely

' deep lower layer occurs essentially because the lower layer becomes so mas-

sive that interaction with the upper layer is removed. In other words, the

o baroclinic conversion of energy is absent and thus the flow becomes stable.

The numerical solution presented in Fig. 5.9 is correctly converging to this
el limit.

2 The discussion in chapter 4 illustrated the importance of the shape of the

interface profile (as denoted by a) to the stability of a coastal upwelling

front. It was also shown that the signs of the wave and mean energy

- components of the unstable disturbance depend on the signs of the basic

T state potential vorticity gradients. The effect on the stability properties

of the system of varying a will now be addressed. Growth rate versus

alongfront wavenumber for three values of a are presented in Fig. 5.10.
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The wavenumber of the fastest growing wave decreases slightly (~ 5% for
a 20% increase in a) as the interface becomes “steeper” (i.e. cross-front e-
’ folding scale less than a Rossby radius of deformation). A more significant ]
: effect of increasing a is the increase in growth rate of the fastest growing
wave. Growth rate (0,) and the real part of the frequency (o,; not displayed

in Fig. 5.10) as a function of a for | -- 1.0 are plotted in Fig. 5.11. The

growth rate and the real part of the frequency increase smoothly as a passes {

@
.

through 1.0 Since the growth mechanism is via baroclinic instability, this

mcrease 1in growth rate is related to the increase in overall vertical shear
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Figure 5.10: Growth rate versus alongfront wavenumber for the unstable
modes present on model fronts with three value of a, the interface profile
parameter. (a) Uniform potential vorticity as in Fig. 5.3a (a = 1.0, thick
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solid curve); (b) interface less steeply sloping than in the uniform potential
vorticity case (a = 0.8, thin solid curve) and (c) interface more steeply

sloping than in the uniform potential vorticity case (a = 1.2, dashed curve).
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- between the two layers.

) :::: Numerical evaluation of the definitions of energy for the most unstable

. ‘. wave shows that for a < 1.0 (cross-front e-folding scale greater than the

,:-::: Rossby radius of deformation) the instability has E; > 0 and E} < 0 and

‘\-, thus can be labelled “positive wave energy” instability. In other words, for

L a < 1.0 the traditional form of instability is recovered. This may be ratio-

Bk nalized by realizing that in the limit as a becomes small the horizontal shear
x in the system decreases and (ignoring the fact that interface displacement is

E\- still largej iraditional quasi-geostrophic dynamics appear more applicable. ;
’ For a > 1.0, the unstable mode has E; < 0 and E} > 0. This “negative ;
:.' wave energy” instability is in the same class as those recently analyzed by

b~ Marinone and Ripa (1984).

'_.-'::; The growth rate curve for an interface profile with a = 1.2 shows an- ]
’ other mode of instability at high wavenumbers (Fig. 5.10). This unstable :
e mode was not found for any value of a < 1.0. The growth rate for this {
" mode increases without bound for increasing wavenumber. As [ becomes

5:3 large the trapping scale (which goes ~ | ') becomes shorter and shorter. i
:?'.: Inspection of this mode reveals it to be an instability whose energy con-

{;:" version is from the kinetic energy of the basic state to the disturbance.

D It should be noted that observations of fronts often show a great deal of

‘:: mixing near the surface front. Inclusion of this process ‘as is done in the ,:‘
7. modelas of Garvine (1983,1984) may greatly influence a high wavenumbet

:?_ mode trapped closely to the surface front as found here. It is possible that

: muxing at the front could quench this imode of instability completely. The

| '-: structure of ¢ the surface displacement, shows a rapid phase change across

the point where the phase speed of the wave equain the mean flow speed

:\ X ot Thiaa pointa to the instabulity being & “critical layer”™ phenomena

; This e in fact the reauit of Killworth (1983} who found unstable modes in a '
‘.’_; seduced gravity model only when a was greater than 1 0 He obtained long

ff' wave e atuima by A careful matching of solytions acrose a critical layer For
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N finite wavenumbers he solved the shallow water equations numerically and
':: found a high wavenumber mode. Comparing the real part of the eigenvalue
N

-~
[

(0,) as a function of { for | greater than ~ 1.5 calculated here to Killworth’s

(1983) result, shows them to be in excellent agreement. However, his re-

x>

Yabs sults indicate that the growth rate of this mode decreases with increasing !
i::; for | greater than ~ 1.5.

e To check that this mode with unbounded growth was not a result of
o including an active lower layer, solutions were found for the same model

\ but with a very deep lower layer. The results for growth rate and phase

- speed versus alongfront wavenumber using both the genstrophic momentum
7 equations (solid curves) and the shallow water equations (dashed curves)
s are shown in Fig. 5.12. The values for ¢, agree well for both sets of equations
differing by less than 1% for | < 5.0. The values of o, for the shallow water
'_".'-_.‘_ equation model decrease with increasing ! for | greater than ~ 2.0. The
o, curve for the geostrophic momentum equations diverges from that of

the shallow water equations at [ ~ 0.4. For [ greater than ~ 1.5 the one-

:;'_: layer geostrophic momentum results for o, exactly reproduce the values
:-:: displayed in Fig. 5.10 for the two-layer model. This confirms that this
.:‘,' mode represents a one-layer instability.

) The next possibility to investigate is that the numerical solution tech-
) 2‘ nique may be failing to find the full eigenvalues for these high wavenumbers
*‘: correctly. To check this the reduced gravity geostrophic momentum equa-
"E: tions were solved using a numerical “shooting” technique (the code for
® this technique was generously provided by Glenn lerley and Bill Young).
. ‘_:-' This solution technique yielded the exact saine eigenvalues aa found by the
J:E: global algebraic eigenvalue so,ution technique as displayed in Fig. 5.12. This
B points clearly to the failure of the geostrophic momentum approximation
@. for this type of basic state (a - 1.0}, deep lower layers and wavenumbers
‘\" greater than - U 4 [t was stated earlier that the results for o 1.0 at all
',:._ wavenumbers compared well with the solution for the shiallow water equa-
:
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tions found by Killworth et al. (1984). The growth curves in Fig. 5.10
at wavenumbers of ~ 1.2 and less for all three values of a appear rea-
sonable. This implies that the geostrophic momentum approximation is
finding the behavior of this baroclinic conversion mode correctly. It should
also be noted that the high wavenumber mode does not violate the criteria
o} < 1.0 until an alongfront wavenumber of ~ 2.5 (see Fig. 5.12).

In an effort to understand why the geostrophic momentum approxima-
tion fails for values of a > 1.0 and wavenumbers of ~ 0.4 and greater (for a
deep lower layer), several simple reduced gravity models both with shallow
water dynamics and with the geostrophic momentum approximation were
attempted. Since the mode is highly trapped to the surface front a model
with a linear interface (¥ = constant) was considered. Analytic results were
found which proved to be absolutely stable at all wavenumbers. Including
horizontal shear (¥, # 0) as a modification to the local Coriolis parameter
predicts instability for a > 1.0 at all / with a decay in growth rate for large
for both sets of equations. To determine the difference between the two sets
of equations it appears necessary to include the curvature (v,, # 0) in the
mean flow. Unfortunately, this rules out analytic solutions and essentially
reduces the problem to that solved numerically above.

Clearly, the geostrophic momentum approximation is failing to produce
accurate results at these high wavenumbers for flows with values of the
interface parameter (a) greater than one. This unreliable behavior at high
wavenumbers is a symptom of the arbitrary truncation of the governing
equations at O(¢?) as discussed in chapter 3. Ancther complicating factor
may result from the fact that for a > 1.0 the absolute vorticity (1 + ¥,)
vanishes in the domain of the upper layer. For a = 1.0, 1 + ¥, vanishes at the
surface front which is already a singular point of the governing equations.
When a < 1.0, 1+ 5, does not vanish in the domain of the fluid. For a > 1.0,
there may be terms neglected in the geostrophic momentum formulation

which become important in a thin boundary layer about the point where 1 -
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v, vanishes. This singular structure of the governing equations is analogous
to the equations governing large scale flow on a sphere where the equator is
a singular point (f = 2{1sin © vanishes for © = 0°).The dynamical balance
in the equatorial region must be developed in a boundary layer structure.
Though this discussion is speculative, the latter effect may contribute to the
failure of the geostrophic momentum equations to accurately predict the
behavior of unstable frontal waves at high wavenumbers on basic states with
a > 1.0. Accurate results for this parameter range may only be obtained
through consideration of the full shallow water equations (e.g. Killworth,
1983).

In conclusion, a two-layer, flat-bottom model of a coastal upwelling front
with uniform basic state potential vorticity in the upper layer is unstable.
The unstable mode propagates phase in the same direction as the mean
flow (toward —y) and converts potential energy of the basic state flow to
perturbation energy via baroclinic instability. Simultaneously, the pertur-
bation transfers kinetic energy back to the basic state flow so as to leave
the basic state flow unaltered. This results in both the mean and wave
energies of the disturbance being identically zero. The unstable mode still
grows with time and energy transfer occurs between the two resonating
wave partners. The proximity of the front to a coastal barrier affects the
growth rate of the unstable mode. The growth rate of the fastest growing
wave decreases the closer the front is to the wall once that distance is less
than ~ 2 — 3 R. The depth of the lower layer dramatically influences the
properties of the unstable mode. Shallow lower layers increase the range of
unstable wavenumbers and increase the growth rates at all wavenumbers.
Increasing the vertical shear in the system (greater a) increases the growth
rate of the unstable inode. For a > 1.0 an unstable mode with negative
wave energy is found while for a < 1.0 the unstable mode has positive wave
energy. In addition, for a > 1.0 there exists a one-layer instahility whose

phase speed is correctly found using the geostrophic moientum approxi-
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mation, but whose growth rate is severely miscalculated. Caution should
be used when modelling flows in this large wavenumber range (and with
points in the flow where the absolute vorticity 1 + ¥, vanishes) using the

geostrophic momentum approximation.

5.4 Inviscid, Sloping Bottom Model

In this section the effect of sloping bottom topography on the stability of
a coastal upwelling front will be investigated. All of the regions where
coastal upwelling fronts are known to occur contain sloping continental
shelves (e.g. Oregon, see Fig. 1.1). These shelves, specifically the region
between the coastal barrier and the continental slope, may be gently slop-
ing as off the east coast of Nova Scotia or steeply sloping as off the coast
of the northwest United States. In either case, the bottom slope can be
classified as strong, in the sense that the change in water depth across the
shelf is large compared to the total depth. As mentioned in chapter 1, these
strong bottom slopes are not allowed in quasi-geostrophic theory where the
fractional change in depth must be the same order as the Rossby number
which is assumed small. However, the model used here, which employs the
geostrophic momentum approximation applied to the shallow water equa-
tions, will permit strongly sloping bottom topographies. The two-layer
models of instability by Orlanski (1969), who used the shallow water equa-
tions, and by Mechoso and Sinton (1981), who used the quasi-geostrophic
equations, both show that bottom topography sloping in the same sense as
the slope of the interface stabilizes the system {1.e. reduces the growth rates
of the unstable ~vaves). The model of Orlanski [1969) did not consider the
stability of a flow with a surface front in the vicimity of a strongly sloping
bottom. In the previous section, the strorg destabilizing effect of a shallow
lower layer was demonstrated. Since coastal upwelling fronts usually form

in shallow water over a slop ng bottom, it is of interest to tind out the net
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effect of these two opposite influences on the stability of the front.

In this section the effect of a linearly sloping hottom on the stability of a
front with uniform basic state potential vorticity in the upper layer will be
discussed. The total depth will take the form H = h, + sr, where h_is the
water depth at the coastal barrier (r  0) and s - 0 is the bottom slope.
As discussed in chapter 3, the sloping bottom will join a flat-bottom region
at a distance several Rossby radii offshore of the surface front. In chapter 6,
the influence of bottom topography which is an arbitrary function of r and
specifically chosen to model actual continental shelf profiles is presented.
Since the depth of the lower layer has such a profound effect of the growth
rates of unstable waves, it is desirable to try to keep the change in the
depth below the surface front as small as possible while varying the bottom
slope. From Figs. 5.6 and 5.7, most of the energy conversion occurs within
~ 1 Rossby radius of the surface front. For these reasons, the sloping
bottom was pivoted about a point fixed directly beneath the surface front
(see Fig. 5.13b}). The values of the bottom slope given in Fig. 5.13b are
obtained by multiplying the actual physical bottom slope by R/H,. This
makes one unit of vertical distance equal to one unit of horizontal distance.
Before presenting detailed results, the effect of a sloping bottom on the
stability of the front can be anticipated by examining the general stability
criteria developed in section 4.3. For a basic state with uniform potential
varticity in the upper layer, the second inequality (4.27b) is satisfied. If
~ is again chosen to be equal to - 1, which satisfies the first inequality
(4.27a) at the surface front (z = r,;) (but not at other values of z, see
below), then to satisfy the last inequality (4.27¢) the gradient of the lower
layer potential vorticity must be greater than or equal to zero. This is
really a requirement that the gradient of basic state potential vorticity not
change sign anywhere (i.e. within either layer or between layers) in the flow.
This echoes the familiar quasi-geostrophic requirements for stabiiity, but

remember now that much larger physical bottom slopes are allowed. The
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only way to arrange this is to have the lower layer continuously thickening as
z — —oo. For a linearly sloping bottom, this requires the bottom slope to
be greater than the maximum slope of the interface. For the exponentially
sloping interface, the maximum interfacial slope occurs at the surface front
and is equal to —1 for the uniform potential vorticity front considered here.
Therefore, the inequalities (4.27b) and (4.27¢) will be satisfied for s < —1.0.
However, the flow will still violate (4.27a) (i.e. for some range of z < z;) so
the possibility for unstable modes still exists. This mode will be analogous
to the unstable mode found for the one-layer reduced gravity model with
a > 1.0 (see discussion in section 4.3). Note again, that traditional quasi-
geostrophic stability criteria applied to this model would predict stability
for a = 1.0 and s < —-1.0.
Growth rate (0;) versus alongfront wavenumber (!) for models with var-
ious values of s (Fig. 5.13b) are displayed in Fig. 5.13a. The solid curve
for a flat-bottom model is the same as that in Fig. 5.9 for a total nondi-
mensional depth of three (r = 3). The long dashed curve is for s = —0.125
and the short dashed curve is for s = —0.50. The presence of a sloping
bottom decreases the growth rate of the unstable wave at all wavenumbers.
The high wavenumber cutoff (I.) becomes smaller for increasing slope. The
sloping bottom also shifts the wavenumber of the fastest growing wave (Im)
to longer wavelengths. Note that even though the depth of the lower layer
beneath the interface is increasing with decreasing s, the fractional decrease
in the growth rate of the fastest growing wave (o;,.) is more than would be
expected from a depth increase alone as can be calculated from Fig. 5.9.
The slope itself is stabilizing the system. The shift of the unstable modes
to smaller wavenumbers occurs because the wave’s cross-front velocity in
the lower layer is restricted by the sloping bottom topography. In other
words, the wave motion in the lower layer is forced to be more alongshore.
In order to maintain a circulation in the lower layer roughly equivalent to
that found in the flat-bottom case (Fig. 5.4b), the closed cell, which has
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"\ been compressed in the cross-shelf direction due to sloping bottom topogra-

:::j- phy, elongates in the alongshore direction. This leads to a larger alongfront

,:_::::" wavelength or a smaller value of the alongfront wavenumber. For a bot-

' tom slope of s = —1.0 no unstable modes were found. Above, the possible

"‘-.' existence of unstable waves even when s < —1.0 was anticipated by an 1
ﬁ::' examination of the general stability criteria. Violation of the necessary 3
X o condition for instability is, in this case, not enough to insure the existence :

of an unstable mode.
Properties of the unstable modes which exist in the presence of sloping

2t

: bottorr ‘opography are examined by focusing on the case s = —0.5. Growth ‘
f:’ ' rate (o;) and alongfront phase speed (c,) versus alongfront wavenumber (!) f'
° are plotted in Fig. 5.14. In Fig. 5.14b the unstable phase speed is denoted
:E: by a solid curve and a number of stable modes are plotted as dashed curves. ;
| ::" As in Fig. 5.3b, the stable vorticity modes with ¢, < 0, except for the two B
:'; modes which resonate for I < 0.8 to produce the unstable mode, are not 3
; plotted. The phase speed of the unstable mode is less negative than in
: the flat-bottom case (compare Fig. 5.3b). This results because the sloping
.‘;c bottom induces phase propagation to +y, which is the same direction as
":: topographic vorticity waves propagate. In fact, the dashed curves for ¢, > 0 >
are stable vorticity modes propagating with shallow water on their right.
.5’ Only the first four stable modes with ¢, > 0 have been plotted. There exist !
) QZ many more stable waves with ¢, > 0 whose phase speeds decrease with "
;: increasing mode number. Among the stable vorticity modes are familiar ::
' continental shelf waves and, for this case where the interface intersects the 'f
R surface, the complimentary-mode edge waves of Bane and Hsueh (1980) )
3 s and Bane (1980). ]
2 The structure of the unstable mode for an alongfront wavenumber near :j
. the fastest growing wave is presented in Fig. 5.15. The upper layer structure .
" ‘ is very similar to that for the flat-bottom mode (Fig. 5.4a). The main effect :
X _\: of the sloping bottom is apparent in the lower layer structure which can A
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Figure 5.14: (a) Growth rate versus alongfront wavenumber for the unsta-
ble mode present on a model front with uniform basic state upper layer
potential vorticity lying over a linearly sloping bottom (s = —0.5). (b)
Phase speed versus alongfront wavenumber for the unstable mode (solid
curve) and a number of stable modes (dashed curves).
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I;:: be compared to Fig. 5.4b. As mentioned above, the unstable mode is more
o confined in the cross-front direction and the velocity field is more along-
‘ shore. The small growth rate for this mode is due to the upper and lower
" layer perturbations being more nearly in phase indicating a less effective
i 5:.:: conversion of potential energy from the basic state flow.
N The transition from an unstable front over a flat bottom to a front
Y completely stabilized by a linearly sloping bottom (s < —1.0) is illustrated
. in Fig. 5.16. The phase speed (c,) is plotted versus alongfront wavenumber
'-'\?.': (!) for both stable (dashed curves) and unstable (solid curves) modes for
_).\ a range of the values of s. For the flat-bottom case (s = 0, Fig. 5.16a)
y ¥ there are no stable modes with ¢, > 0. A number of stable modes exists for
: ¢, < 0, but only the modes with the three largest values of |c,| are plotted.
- The front is unstable over the entire range of ! plotted in Fig. 5.16 (0.1 <
:::: | < 1.2). With a small amount of bottom slope (s = —0.06, Fig. 5.16b)
,;.:: stable modes with ¢, > 0 are introduced. As in Fig. 5.14b, only the first
7

four stable modes with ¢, > 0 are plotted. The phase speeds of the stable
modes with ¢, < 0 have become less negative. The front is still unstable
for wavenumbers in the range 0.1 <! < 1.2, but now the unstable mode

propagates to +y for ! less than approximately 0.37. The fact that these

-
-
R J

=

- 3‘ unstable modes with ¢, outside the range of the mean flow speeds (which
;.{_‘ is negative for all values of z) exist, can be rationalized by realizing that
',. S the topographic slope in this study is analogous to the effect of B (the {
:.... north-south gradient of the Coriolis parameter) in a flat-bottom model. In
° a quasi-geostrophic model with 3, a semi-circle theorem can be established
e which allows unstable waves with phase speeds outside the range of the
-, mean flow velocities (Pedlosky, 1986). Analogous possibilities are allowed
':: > in this study due to the linear bottom slope.
X! For a greater value of |s| (Figs. 5.16c—e), the phase speeds of the stable
w" modes with ¢, > 0 become greater. The phase speeds of the stable modes
P :f: with ¢, < 0 become more positive and appear as a thick line near ¢, = 0 in
Sy
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Figs. 5.16d and e. Unstable waves exist for a smaller and smaller range of
l as |s| increases. Finally, for s = —1.0 (Fig. 5.16f) no unstable modes are
found and there exists only one stable mode with ¢, < 0.

Another useful set of calculations involves keeping the bottom slope
constant and increasing the lower layer depth. Intuitively, one might expect
the stability of a surface front over a deep lower layer not to depend on the
bottom topography. Growth rate (o;) versus alongfront wavenumber ({) for
a range of lower layer depths [h,(z;) = 4,10,20] over a flat bottom (solid
curves) and a sloping bottom (s = —0.125, dashed curves) are displayed
in Fig. 5.17. The analogous curves for h;(z;) = 3 appear in Fig. 5.13a.
The stabilizing effect of a sloping bottom is not diminished by a deep lower
layer. This result is consistent with the stability theorem (4.27), since no
matter how deep the lower layer is, there still exists a change in sign of
the lower layer basic state potential vorticity gradient for s > —1.0. In the
real ocean, surface-intensified features are often independent of the bottom
topography. The model discussed here has a homogeneous lower layer so
that bottom effects are transmitted to the entire water column. In the
real continuously stratified ocean, the underlying density field may negate
the effect of the bottom topography on the stability of the surface front.
This omission in the simple model investigated here is discussed further in
chapter 7.

The above results indicate that a large absolute value of the bottom
slope parameter s may stabilize a coastal upwelling front. For realistic bot-
tom topographies and flow fields associated with coastal upwelling fronts
observed in nature, stabilization by a sloping bottom may not be realized
for at least two reasons. As illustrated in Fig. 5.13a, a large absolute value
of the bottom slope parameter s is needed to stabilize the front. Where

can these large absolute values of s come from? The bottom slope |s| will

i~

be large if the actual physical bottom slope is large or if the scaling fac- 3
tor R/H, is large. Since R = (¢'H;)"/?/f, this factor can be written as g
102




........

Es
[ep—

T‘: ‘
< "3
o i
i "
'*'\ o
ﬁ: t:_
N :..-
:: &:'
o :
L] [
3 4
o o
\ -
'.\',: 0.07 + 4 + t + 4 + ! :
) iy
: M =1 [N
b 0.061 * } i
K> g
-l S 0.05; e A
P ~ x
_l" N
o L 0.04;
* (@) W)
S d Y
W '
. £ 0.031 1 =
Ny 2 e
R '-: 8 :_u
‘ :_ &) 0.021 -
L o)
S :
ke 0.01¢ { -
.- 0.00; 0
- 0002040608101214161820 '8
‘& Along front wavenumber (1) "
I"_ ol
h: ‘.\:
o 3
“ - )
.l .
® .z
'.; . (A
:‘ Figure 5.17: Growth rate versus alongfront wavenumber for a model front 4
e over a flat bottom (solid curves) and a linearly sloping bottom (s = —0.125, KX
::, dashed curves) where the three pairs of curves are for different lower N
el layer depths. The largest growth rates are for hy(z;) = 4.0 followed by -
. ha(zs) = 10.0 and hs(z;) = 20.0. .
) ¥ "
- o
] iy
w -
L 103 2
‘ Ea
:C:
o -4
% 3
7’ N
", »
o .
N ; 1'
«, [’ " ~ - Ry & i
.. :.,;.I "",a‘,'-’ S AN R J' s._).-“'-\.‘_i-u'r-.y- "'-; k"’ g : "’: o\ \\\ "‘\'1\)‘ AN }

a o ~""’ ‘f‘ N ..'.-i-, o a'.'\"‘. E: s A .'-l AN :".', QOO

..... " "s_ i Y



N

(¢'/Hy)'/?/f. Clearly, this factor will be large for a big density difference
between layers or a shallow upper layer depth. Many of the coastal up-
welling fronts in nature (e.g. Fig. 1.1) are of this form, so |s| may be big
enough to satisfy the inequality (4.27c), thus leaving only the possibility of
the weakly growing unstable mode associated with the violation of (4.27a).
As mentioned above, this unstable mode was not found numerically. One
resolution to this is to realize that if H; is small then the maximum dimen-
sional velocity (which occurs at £ = z;) will also be small. The basic state
flow field associated with the front can then be made to violate (4.27c)
by increasing the slope of the interface (i.e. by increasing a). This will

result in an increase in the maximum nondimensional upper layer velocity.

Cae However, since H; is small, the required maximum dimensional velocity
’5-: will often not exceed speeds observed in conjunction with coastal upwelling
‘ fronts (e.g. Kosro, 1987). This discussion is intended to demonstrate one
e way that reasonably realistic flow fields over linearly sloping hoctom topog-
’ . raphy can be potentially unstable through their violation of the inequality
2\ (4.27¢).
: Another more likely explanation for why alongfront variability is com-
e monly observed on coastal upwelling fronts over sloping topography (i.e.
2 the front is not stable) is that modelling the continental shelf as a constant
E linear slope is not very realistic. Upwelling regions of the world’s oceans
i contain quite variable bottom topographies with both steeply and gently
: \ sloping sections. Since, in their formation process, coastal upwelling fronts
migrate offshore (e.g. de Szoeke and Richman, 1984), they will pass over
, ::; regions of varying bottom slope. Therefore, the front’s stability will depend
K :-‘ on the local bottom slope near (within ~ 1 Rossby radius) the surface front.
:: Including a realistic bottom topography will provide a range of the values of
o. the bottom slope parameter s which contains small enough absolute values
E: to allow for the possibility of unstable waves. A model with bottom to-
vy ',, pography which is an arbitrary function of z, the cross-shore direction, will
b
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be used in chapter 6 to verify the existence of unstable waves on realistic
coastal upwelling fronts.

5.5 Linearized Bottom Friction

The previous results have all been for an inviscid model. Since coastal
upwelling fronts form in regions of shallow water, bottom friction will cer-
tainly be present. In addition, viscous effects may be present at the sharp
density interface between layers (Simpson and James, 1986). This latter
process is modelled in the studies of Garvine (1983,1984) by including a
thin, dissipative zone adjacent to the surface front. In fact, as discussed in
chapter 2, turbulent entrainment from this zone to the inviscid interior was
necessary in order for Garvine (1984) to obtain spatially growing wave so-
lutions. Since friction can be an important process in shallow coastal seas,
its effect on the stability of a coastal upwelling front will be investigated in
this section. First, the modifications to the governing equations and their
solution due to the inclusion of dissipation will be discussed. Following
this, changes in the growth rate curve due to frictional damping for one
particular model configuration will be presented.

In the model investigated here, damping will be provided to the flow
by linearized bottom friction. While interfacial friction may be important
in the formation and evolution of a coastal upwelling front, its inclusion
makes even the basic state flow difficult to solve analytically. Without
a known basic state flow, the solution for the perturbations is precluded.
The choice of damping by linearized bottom friction is also motivated by
its importance in studies of wave motion over the continental shelf (Brink
and Allen, 1978; Brink, 1982; Allen, 1984).

With linearized bottom friction, the lower layer geostrophic momentum
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s equations for the perturbations (3.9} become
e
: $r., +va=¢p — ——Lg
») T DTN T R
o _ A
3 R 1
:'::. where A, the nondimensional friction coefficient, is related to the dimen-
. sional version (which has units of velocity) by
-
T
N Note that the friction velocities have been made geostrophic, consistent
i with the geostrophic momentum approximation. Substituting normal mode
"-’i form for ¢ [from (5.1)], the momentum equations become
y '::- tA
N o+ hq lgT tv2= gTz’
--:-. :
- : A .
_.}_. — (30 — T) gT, + uz = —llgT.
1_:-: hg
:::::: Lower layer velocities will now be given by
v s
U = _'lgT + (20' - —:) S.T ’ (5.188)
N ha J 7
L i)
K va=¢p |0+ —=—] ¢, (5.18b)
b :"-4' * hg
B,
.'\‘ ’ Finally, substituting (5.18) into the lower layer continuity equation (5.4c)
7

results in an ordinary differential equation for ¢

3 ul.':lub

& ha, 1 2 1 1 1A hae AR
[}
2 T T\ R A vl I A W R v A
.t' (5-19)
N The finite difference forms of this equation and the former upper layer
"-. - . 3 . . -
.. equation (5.7a) are again combined to yield an algebraic eigenvalue problem
‘s
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of general form. The interior equations (excluding the boundary conditions
which will be described below) are still linear in the eigenvalue o, but the
coefficient matrices 4 and B are now complex. Complex eigenvalue solu-
tions to this nonhemwlitian s;stem need not occur in conjugate pairs as was
the case for the former inviscid system (5.8). Boundary conditions at the
wall and at the offshore edge of the two-layer region are modified by the
presence of bottom friction. At the wall, lower layer cross-shelf velocity
(5.18a) is again required to vanish. Implementing this condition in the fi-
nite difference scheme results in terms proportional to o?. This appears
to destroy the gains made by making the geostrophic momentum approxi-
mation (i.e. the algebraic eigenvalue problem was linear in the eigenvalue
o), but this setback will be resolved below. At the offshore edge of the do-
main where the interface and bottom are flat, the solution can be matched
onto the two-layer frictional solution of Allen (1984). For finite depth lower
layers the solution in this region will have a decay scale which depends
on frequency. Only for deep lower layers will the decay scale become in-
dependent of frequency. Matching the frontal model to this solution will
introduce terms proportional to 02,0%,0*... which will greatly complicate
the numerical solution technique. To avoid this difficulty, a solid wall was
placed at the offshore edge of the domain and normal velocity in each layer
was required to vanish there. Inviscid model runs with this offshore bound-
ary condition showed less than a 1% change in the eigenvalue compared to
the open offshore boundary condition model. The finite difference forms of
these boundary conditions, as mentioned above for the coastal boundary
condition, introduce terms proportional to ¢?. The total problem, with

boundary conditions, can now be written as

AnN=oBn+0CHn, (5.20)
S~ [ Mad N~

where 7 is as defined in section 5.2. The matrices 4, B and C are all com-
~ (=] =] ]

plex. This algebraic eigenvalue problem which is nonlinear in the eigenvalue
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o can be made linear (e.g. Webster, 1987) by defining a new column vector
E=o0n. (5.21)

Substituting this into (5.20) gives
AN = (B n+ 5) . (5.22)
N~ N~ ~

Finally, (5.21) and (5.22) can be combined and written as

n BcCc)/(n
(z)zo - " (E) (5.23)

where [ is the identity matrix and 0 is a null matrix. The system (5.23) is
now a :omplex algebraic eigenvalue problem of general form which can be
solved using a QZ algorithm as implemented by the IMSL routine EIGZC.
The memory requirements for the problem have increased by a factor of
eight (a factor of two is due to the need to store complex values in the
coefficient matrices). The same procedure may be used to reduce systems
with terms proportional to higher powers of the eigenvalue to problems
linear in the eigenvalue. The only expense is the requirement for a large
amount of computer storage space. In this study, no terms proportional to
powers of o greater than two were retained in order to keep the problem
computationally tractable.

The first model used to study the effect of bottom friction is the uni-
form potential vorticity flat-bottom model discussed in section 5.3. The
offshore constant lower layer depth is chosen to be twice the upper layer
depth (r = 3). The value of A chosen for the study was 0.2 which cor-
responds for an upper layer depth of 20 (50) m and mid-latitudes to a
dimensional value of 0.04 (0.10) cm s~!. Typical values for the continental
shelf are from 0.015 cm 8~! to 0.08 cm s™! (Brink et al., 1987). The model

Py
friction parameter of 0.04 cm s~! for H; = 20 m (roughly corresponding P
N
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T to the upwelling front in Fig. 1.1) lies within this range while the value of
'
-':.': 0.10 cm s~! for H; = 50 m is probably an overestimate. .
‘F‘n‘ »

To determine what effect friction might have on the stability of the .

coastal upwelling front, it is useful to compare the frictional time scale (de-

~

\_:

ﬁ*‘ fined as the ratio of water depth to the friction parameter) to the e-folding !
::_ time scales of the growing, inviscid, unstable waves. For the fastest grow-
'-': ing wave on a uniform potential vorticity front with the offshore lower layer 3

. depth equal to twice the upper layer depth (r = 3, growth curve displayed

:_j in Fig. 5.9), the dimensional e-folding time scale is t,-yoi4 ~ 1.8 days. If
] E} the total depth is used, the dimensional barotropic frictional time scale is B
": tsy = 3H, /A, =~ 1.7 days. Since these time scales are comparable, it may y’
o be anticipated that bottom friction will play a major role in the stability
of a coastal upwelling front. In fact, previous quasi-geostrophic instabil- :
- ity results including damping show that friction may destabilize a system '
:*-_'.3 by introducing new modes of instability which were absent in the inviscid '
H cases (Holopainen, 1961; Romea, 1977). However, since the wave motion :
i ' is concentrated in the upper layer (Figs. 5.4, 5.15), the effect of bottom
g friction will be reduced due to the insulating presence of the lower layer.
o Following Allen (1984), the effective friction parameter due to stratification K
;; is obtained by multiplying A, by (1/2)(H,:/H;). Since (H,/H,) = 1/2, the
“:‘: effective frictional time scale will be ~ 6.8 days. Now the unstable wave r
":::_’ grows on a time scale faster than the damping time scale, so the effect of »
5‘-: friction on the wave will be weak. That is to say, friction will not signif- '
o icantly modify the structure of the growing wave, but can be expected to _
:'[‘: decrease its growth rate since it extracts energy from the system. These \
’,:5 results are confirmed below. E
i Growth rate (o;) versus alongfront wavenumber (/) for a viscous (solid ]
e. curve) and the previous inviscid (dashed curve) model are displayed in
' ’ Fig. 5.18. The inviscid growth rate curve is the same as plotted in Figs. 5.9

: and 5.13a. Bottom friction has decreased the growth rates for waves with :
-
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Figure 5.18: Growth rate versus alongfront wavenumber for an inviscid
(dashed curve) model front and a model with linearized bottom friction
(A = 0.2, solid curve). Both models have a flat bottom (s = 0, r = 3) and
uniform upper layer basic state potential vorticity (a = 1.0).
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wavenumbers less than ~ 1.3. The growth rate for the fastest growing wave
has been decreased by ~ 40%, but bottom friction has not significantly

AR, |

shifted its wavenumber. Bottom friction has also increased the unstable
modes’ phase speeds toward —y. This latter effect can be quite large, with

Y oy L |7

several numerical experiments yielding increases as large as a factor of 3 or

4. At high wavenumbers, the presence of bottom friction has introduced

a slowly growing unstable mode. This mode is due to the additional vor-
ticity source provided by bottom friction. Its growth rate decreases with
increasing wavenumber in a similar manner to the high wavenumber mode
discovered by Killworth (1983) for a one-layer reduced gravity model. Ex-
amination of the fastest growing mode’s structure in the upper layer (not
shown) shows very little difference from the inviscid case. In the lower layer,
the magnitude of ¢, and its cross-shelf extent are decreased compared to
the inviscid model. Overall, though, the structure of the viscous mode is
very similar to the unstable inviscid mode.

With linearized bottom friction the conservation of wave energy (4.20)
becomes

.
a:;, =—%/hl vq,,’“ dA — A/ ¢4 +¢3) da.

Since Q;, is zero for this particular basic state flow, the wave energy at all
wavenumbers will be negative. As mentioned above, a high wavenumber
mode exists in the presence of bottom friction, but is absent in the invis-
cid case. For large wavenumbers friction is destabilizing the system. The
existence of this high wavenumber mode may be rationalized be recalling
the comments made in section 4.2 about the potential for instability due
to resonance between a stable wave and bottom friction. For the unstable
alliance to occur, the wave partner must have negative disturbance (wave
E; plus mean E}) energy so it can lose energy to dissipation. The resulting
unstable wave has zero net disturbance energy as the wave transfers dis-

turbance energy to dissipation. The high wavenumber mode found here is
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an example of this process which is described further by Cairns (1979).

The high wavenumber mode found here in the presence of friction can be
compared to the high wavenumber mode found in the inviscid model with
a > 1.0 (see section 5.3 and Killworth, 1983). Both modes have negative
wave energy. For the inviscid model with a > 1.0, the vorticity source for
the perturbations is the nonzero basic state potential vorticity gradient in
the upper layer. In the viscous case, bottom friction provides the vorticity
source for the perturbations. In either case the high wavenumber modes
are trapped closely to the front and have small growth rates. As mentioned
in section 5.3, these modes may not be observed in nature not only because
they grow slowly, but also because cross-frontal mixing near the surface
front may quench them completely.

Results for a model with a flat-bottom and a # 1.0 are qualitatively
similar to those discussed here for a = 1.0. Specifically, the growth rate of
the fastest growing wave for all « is decreased and a slowly growing, high
wavenumber mode exists in the presence of friction for a < 1.0. The high
wavenumber mode for a = 1.2, whose growth rate is miscalculated using
the geostrophic momentum approximation (see section 5.3), is essentially
unaffected by the presence of bottom friction.

The primary effects of bottom friction on the unstable modes discussed
above is to decrease the fastest growing mode’s growth rate and increase
its phase speed in the direction of the mean flow. This results because the
frictional damping time scale is much longer than the e-folding time scale
of the growing wave. When these time scales are more comparable, friction
may destabilize the system (Holopainen, 1961; Romea, 1977). To illustrate
this effect, the model was run with a uniform basic state potential vorticity
flow in the upper layer (a = 1.0) and a sloping bottom such that s = —1.0.
As shown in section 5.4, the inviscid version of this model is absolutely
stable. When bottom friction is added to the system, a weakly growing
[0, = 6.0 X 1072 for a model with ha(z;) = 3.0; compare to growth rates
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in Fig. 5.18] unstable mode appears. This destabilization by friction in the i
presence of topography is analogous to the quasi-geostrophic models with ”
the g effect and bottom friction (Holopainen, 1961; Romea, 1977).

The destabilization of the flow through the introduction of viscosity is a
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the interior flow and the bottom slope. That is, the strong constraint for
) flow along isobaths is broken by the presence of bottom friction. A second
__E explanation relies on the fact that friction introduces a phase shift in the
_.: disturbance. This phase shift allows the wave to release energy from the N
:'-: basic state flow. It can be shown that the gain in energy is larger than 4
® the loss of energy to dissipation so the disturbance amplifies. The final
;'j interpretation, as mentioned earlier, involves an alliance between dissipa- 3
\ tion and a stable wave with negative disturbance energy. The stable wave -
: propagating to —y in the inviscid model with s = —1.0 (see Fig. 5.16f) has \
’ negative disturbance energy. This mode grows as it transfers disturbance
'.:: energy to dissipation in order to maintain zero net disturbance energy. ‘
" ::1 In conclusion, bottom friction, which is known to be an important pro- :
.»_:E cess in the coastal ocean, is not expected to completely quench the unstable 4
: waves present on a coastal upwelling front. This is mainly due to the fact
: that the motion of the unstable wave is concentrated in the upper layer and :s
‘:: is thus insulated from the damping effect of bottom friction by the pres- ‘
o ence of the lower layer. However, bottom friction does provide a sink of .
:‘C energy to the system so a decrease in the growth rate of the fastest growing ‘
j:t,' mode can be expected. For a value of the friction parameter in the range ':
o of observed values and for a constant offshore layer depth equal to twice !
:::: the upper layer depth, this decrease in growth rate is on the order of 40%. :
: For weaker friction or deeper lower layers this effect will be less. Finally, an ~
\: example of destabilization by bottom friction is provided by a model with .
| “c a steeply sloping bottom (s = —1.0). The unstable mode in this case has a \
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counterintuitive result. This effect can be rationalized in several ways. One

simple explanation is that bottom friction breaks the connection between
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very small growth rate.

5.6 Summary

In this chapter the existence of unstable waves on model upwelling fronts
has been demonstrated. For a front next to a coastal wall over a flat bot-
tom, the fastest growing wave gains energy from the basic state potential
energy via baroclinic instability. Numerical confirmation of the conser-
vation statements set forth in chapter 4 was obtained. In particular, a
negative contribution to the wave energy form the cross-term —vv,§, was
found. For a front with uniform basic state potential vorticity in the upper
layer, this negative contribution exactly balances the positive sum of the
kinetic and potential energies to make the wave energy identically zero.

A decrease in the fastest growing wave’s growth rate was obtained when
the surface front is moved closer than ~ 2 R to the coastal barrier. Deep
lower layers decrease the growth rate for all values of alongfront wavenum-
ber due to the decreased overall vertical shear. Increasing the steepness
of the interface by increasing the parameter a results in a gain in the
fastest growing wave's growth rate. For an interface profile steeper than
a front with uniform basic state upper layer potential vorticity, a high
wavenumber mode was found whose phase speed is correctly found with
the geostrophic momentum equations, but whose growth rate is badly mis-
calculated. A linearly sloping bottom decreases the growth rate for all
values of the alongfront wavenumber. A large enough bottom slope can
completely stabilize the front by removing the change in sign in the poten-
tial vorticity gradient of the lower layer. However, realistic continental shelf
topographies contain a wide range of bottom slopes and are not expected
to completely stabilize a coastal upwelling front. Finally, linearized bottom
friction decreases the growth rates of the unstable waves since it extracts

energy from the system. For a < 1.0, a high wavenumber unstable mode
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exists because of the presence of bottom friction. In general, this mode
has small growth rates. Bottom friction may also destabilize a flow which
is otherwise stable in the absence of dissipation. The resulting unstable
mode has a very small growth rate. In the next chapter, the predictions for
the properties of the fastest growing wave in a realistic stability model will
be compared to observations of alongfront variability on coastal upwelling
fronts.
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:-3. Chapter 6
b
e
y Comparison with Observations
*,
%
o,
o 6.1 Introduction
:‘ The results from the simple stability analysis presented in the previous
::'_: chapters show that unstable waves do exist on model coastal upwelling
' fronts. The alongfront wavelength, e-folding time and propagation speed
'.“ of the fastest growing wave depends on various properties of the basic state
o flow and model geometry. Observations of upwelling fronts in many regions
| ",:: of the world’s coastal oceans show alongfront variability in the offshore po-
sition of the surface front. As noted in chapter 1, these alongfront meanders
2 often appear wavelike and can extend alongshore over many repeated wave-
lengths. Observations also yield evidence for temporal growth in the size
:: of these alongfront disturbances. The purpose of this chapter is twofold.
:: First, observations of coastal upwelling fronts from several regions of the
t world’s oceans will be examined for evidence of unstable frontal waves.
. Second, the scales of the observed alongfront variability will be compared
o to the properties predicted by the simple stability model presented in the
f previous chapters.
:‘,. Sea surface temperature (SST) maps from almost any region of active _1
& coastal upwelling show meanders in the surface temperature front. The =
"'E discussion presented here is not intended to be a comprehensive worldwide %
- 0
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'\‘.:: survey of frontal variability nor is it meant to be a detailed examination X
: :::f of the physical dynamics of coastal upwelling. References to studies of this >
A type are included in chapter 2. Rather, case studies from selected upwelling
> regions will be analyzed concentrating on the properties and evolution of
"-:::: wavelike perturbations in the coastal upwelling front. These regions are off
i E‘_’.' the coasts of Oregon, Nova Scotia and southwest Africa. ;
b As mentioned in section 5.4, the bottom topography of the continental
e margin contains regions of varying bottom slope. In order to include realis-
';J tic bottom profiles, the stability model will be modified to include bottom
_ topography which is an arbitrary function of z, the cross-shelf coordinate.
;'; This more physically realistic model with the appropriate input parameters g
o will then be used to determine the properties of the fastest growing wave.
:.':j:' According to the linear theory developed here, this is the mode which will ,'
_i_'-f be observed in nature as it grows most rapidly from a small initial distur- ':
":" bance containing many wave components. The model presented here does :
' v not determine the unstable waves’ properties at finite amplitude but, nev- .
A ertheless, provides estimates which can be compared to observed frontal ]
variability. In fact, reasonable agreement between the properties of the
- predicted unstable waves and observed frontal variability suggests that the
,,) linear model predictions may hold at finite amplitude.
::: 3
e 6.2 Oregon :
o X
) The coastal ocean off Oregon is an area of active upwelling during the 4
K ~-:‘ summer when winds become predominantly upwelling-favorable (blowing X
:E:E: with the coast on the left)(e.g. Curtin, 1979). An example of a coastal
X "3 upwelling front in this region was presented in chapter 1 (Figs. 1.1, 1.2). »
.‘ Two time periods during which almost daily aircraft SST maps are available A
"f- (O’Brien et al., 1974) will be examined for the presence of unstable frontal ‘
:-; waves. The first time period is July 12-15 after the peak of a strong (wind
e A
o
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‘.::f stress greater than 4 dyn cm™?) upwelling-favorable wind event (Fig. 6.1).
'$'::;: A SST map from the middle of this period (July 14) was shown in Fig. 1.2
“") and is repeated in Fig. 6.2, which also contains maps earlier (July 12) and
X : later (July 15) in time. On July 12 (Fig. 6.2a), active upwelling is indicated
K-> by the presence of cold water near the coast. At this time the surface front
&;\.: is not very sharp. That is, the temperature change between inshore, cold,
N upwelled water and the warmer, offshore waters occupies a region at least
S 35 km wide. Note the tendency for the surface isotherms to run parallel
AN to the coast. However, they are not absolutely parallel to the coast or the
! _: bottom topography. An alongfront meander exists in the surface isotherms
S (e.g. the 49° contour).
b= On July 14 the wind stress has decreased (Fig. 6.1) as the upwelling- ;
E'»::.:: favorable wind event finishes. The SST map (Fig. 6.2b) shows a sharp,
. pronounced surface front ~ 20 km offshore. An alongfront meander pattern,
',;" which appears wavelike and extends alongshore over approximately two
,,) y wavelengths, is clearly evident. The northern part of the disturbance has
"-'C.': a larger wavelength than the southern part. A quantitative estimate of the
: :.\ wave properties is presented below. Tracing isotherm position (e.g. using
f :: the 49° isotherm) from the SST map of July 12 to July 14, shows that the :
D) . alongfront meander has essentially grown (larger cross-front peak-to-peak
; ::E' amplitude) without the whole pattern moving much alongshore. Growth
) :"'C in time of a meander pattern does not alone justify the interpretation of
_é:: the phenomenon in terms of an instability process. For instance, stable
o wind-driven motions will change in amplitude as the forcing changes in
'F;.: time. However, growth in time and propagation of the meander pattern in
a’.i-'; the same direction as the basic state flow (which will be established below
O for the case studies from each of three geographic locations) do support
0. the idea that the observed wavelike perturbations result from an instability
:.;:'C process.
:\:2-_: The wavelike pattern evident in Fig. 6.2b does not have a symmetric 3
ur_:-
) ‘1!:.- 118
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Figure 6.1: Wind stress measured off Oregon during summer, 1973. The
lower panel shows alongshore wind stress where negative (equatorward)
values represent upwelling favorable winds. From Halpern, 1976.
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Figure 6.2: Sea surface temperature (in degrees Fahrenheit) from aircraft
surveys off the coast of Oregon on (a) July 12, (b) July 14 and (c) July 15,
1973. Flight path is shown as a dotted line. Depth contours are in fathoms
(1 fm = 1.8 m). From O’Brien et al., 1974.
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sinusoidal shape. There is clear evidence that the surface front’s position
moves more quickly from offshore to onshore than from onshore to offshore.

In other words, the wave is steeper downstream of regions where the up-
per layer is shallow. This type of pattern is consistent with the alongfront
advection of layer height implied by the negative contribution of the term

—¥vy,¢, to the wave energy discussed in chapter 4. As displayed in Fig. 4.1, E

this contribution implies that regions where the upper layer is shallow travel -3
more quickly downstream than regions with thick upper layers. A planview B
of this pattern as obtained from a conceptual model of wave steepening is E
displayed in Fig. 6.3. Two comments can be made on the wave steepen- =
ing effect. The first is that wave steepening is a nonlinear effect and the -
unstable wave motions modelled here are strictly linear. However, wave N

steepening is consistent with the predicted linear solution and does appear by
in observations of alongfront variability. The second point is that the wave "_:‘

steepening observed here is in the opposite sense to that predicted for stable

waves over sloping bottom topography in the presence of a surface front.

Gill and Schumann (1979) show that for a surface front over a linearly slop- -
ing bottom, only stable waves with poleward speeds less than the mean flow - X

speed exist. They further note that for this supercritical flow, the inshore X
part of the wave moves more quickly to —y than the offshore part. This -

leads to wave steepening downstream of the region where the upper layer is :'-:
deep. Therefore, the observations presented here are more consistent with Z:?_

unstable frontal waves than with stable topographic waves in the presence
of a surface front. :
Compression and rarefaction of surface isotherms within the frontal zone \.\_ )
is apparent in Fig. 6.2b. This pattern may be due to the presence of a shal- N
low bottom and a coastal barrier on one side of the front. On the inshore A
side of the front, the bottom and coast restrict the cross-shelf movement

of the surface isotherms which leads to their compression. On the offshore :

side, the peaks grow without restriction so no compression occurs and the E
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':: Figure 6.3: Modelled example of surface isotherm pattern due to wave
KD steepening effect. The coastal barrier lies at the top of the figure. At a
A constant offshore distance seaward of the surface front (e.g. —1.2), the
upper layer will be deep when the front is closest to the coast and shallow
for the front farthest from the coast.
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isotherms appear spread apart compared to the inshore peaks. Evidence
for this topographic effect is apparent in the widely spaced isotherms at the
offshore peak near ~ 45° 15’ N and the tightly packed isotherms at the in-
shore peak just to the south. While the above discussion may explain some
of the observed compression /rarefaction of surface isotherms, the structure
of the frontal zone is clearly more complicated. A stability model with bet-
ter resolution of the frontal zone is needed to fully understand the observed
surface temperature patterns. x
The SST map from July 15 (Fig. 6.2¢c) exhibits a sharp surface front o
in the north (45° 10’ N) connected with a weaker temperature gradient
region to the south. The vertical section of density presented in Fig. 1.1 t
was taken across the sharp front in the north at ~ 45° 15’ N. There still
exists alongfront variability in the position of the upwelling front, but the
amplitude of the disturbance appears less than in the July 14 SST map. .
Furthermore, tracing the change in time of isotherm position (e.g. using b
the 49° isotherm) shows that the entire meander pattern has propagated
to the south. This propagation speed is quantified below. The sharp front ‘
in the northern part of the July 15 map is presumed to have come in to
the study region from the north. This would be consistent if the wavelike
meander pattern of July 14 repeated northward of the study area. Although

measurements do not exist to prove this conjecture, the alternating pattern :’:

of closely packed isotherms at inshore peaks and widely spaced isotherms t

at offshore peaks would indicate, if the pattern did repeat northward, the N

existence of a region to the north of closely packed isotherms associated -

with the next inshore peak of the disturbance. This sharp frontal region ;:

would then presumably have propagated into the northern part of the SST ;

map of July 15. ;

The next available SST map (July 16, not shown) exhibits a less orga-

nized pattern and contains several eddies of ~ 30 km length in the along- v

shore direction. It is difficult to identify a surface front connected in the .‘
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] alongshore direction.
:}S The above results provide a qualitative description of the growth of an
‘ alongfront meander on a coastal upwelling front off the coast of Oregon.
In order to compare the observations to the stability model predictions, a
-:::-L quantitative estimate of the meander properties must be made. To estab-
'?:':E lish an alongfront wavelength, individual SST maps are used to measure
the alongfront distance between peaks of the wave. As noted above, the
. wavelength is different between the northern and southern parts of the dis-
:{.‘:: turbance. This difference may be due to an alongshore change in the shelf
'i;::: geometry or basic state flow, a feature which is absent in the simple stabil-
:::J::j ity model presented in the previous chapters. This subject will be discussed
' further in chapter 7. An estimate of the range of alongfront wavelengths
‘C:: may be obtained by measuring peak-to-peak distances from all three SST
j\ maps. Individual values obtained in this manner are contained in Table 6.1.
:.-'.'-'_: The range of alongfront wavelengths is 32-52 km.
= While estimating alongshore phase propagation for the meander pat-
. ::: terns is difficult, an attempt is made at least to establish the direction
, and get a rough estimate of the magnitude of the propagation speed. Two
:::j methods are used to determine the alongshore propagation speed. Changes
- in the alongshore position of the wave peaks between July 12 and July 14
o and between July 14 and July 15 are averaged to obtain a propagation
::.'f: speed of ~ 9 cm s~ ! to the south. The individual estimates used in this
‘ ::Q average are contained in Table 6.1. The second method involves measuring
paTs the distance between the intersection of individual surface isotherms with
.);" the 50 fm isobath from one SST map to the next. This method yields an
J-',:: average propagation speed of ~ 8 cm s~! toward the south, which is fairly
;": close to the estimate from the first method.

An estimate of growth rate for this frontal wave can be found by ex-
s amining the change in time of the cross-front peak-to-peak wave ampli-
tude. This is most easily done between the July 12 and July 14 SST
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maps, with the result (individual values in the average are contained in
Table 6.1) 0! f~! ~ 4 days. This estimate of growth rate as well as those
for alongfront wavelength and propagation speed should be treated as ap-
proximate, given the certain amount of subjectivity used in drawing the
contour maps of SST. However, they provide reasonable estimates to com-
pare to the properties predicted for the fastest growing wave in the stability
model.

Before comparing observed frontal wave properties for this geographic
location to those obtained from the stability model, a second time period
will be examined. SST maps from July 22 and 23 are displayed in Fig. 6.4.

The winds during this period (Fig. 6.1) vary daily between a 1 dyn cm™2
stress in an upwelling-favorable direction to little or no wind. A surface
temperature front is evident in Fig. 6.4a separating cold, inshore water from
the warmer water offshore. As during the previous time period (discussed
above), a wavelike meander exists on the surface front. No SST information
is available in the 3 days before the July 22 map, so the previous time
history of the meander pattern is unknown. The wavelength of this feature
is comparable to that of the July 12-15 meander, with the same tendency
for a longer length scale in the northern part of the study region. The
properties of this wave are quantified below. A continuously connected
alongshore front is less obvious in the SST map from July 23 (Fig. 6.4b).
In fact, the wavelike pattern of July 22 seems to have amplified and perhaps
broken into closed or nearly closed eddies. Note the offshore eruption of
the 56° isotherm at the northern end of the study region, the deepening
of the trough just to the south and the strengthening of the cold eddy
at ~ 44° 50’ N. (Note that the above interpretation is only one possible
explanation for the evolution of the surface temperature pattern and that
processes such as mixed layer deepening could make following the motion
of individual surface isotherms between maps problematic.) This behavior

of the alongfront meander pattern is surely a finite amplitude phenomenon,
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Figure 6.4: As in Fig. 6.2 but for (a) July 22 and (b) July 23.
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which suggests that the unstable waves predicted by the small amplitude
model in the previous chapters can grow to finite amplitude. This sequence
of SST images may offer an example of an alongfront meander beginning
to disrupt the alongshore flow field by the formation of detached eddies.

The same techniques as used for the first time period are used to quan-
tify the properties of this wavelike perturbation. The individual estimates
used are contained in Table 6.2. The range of alongshore wavelengths is
31-60 km. An alongshore phase speed of ~ 14 cm s~! to the south is ob-
tained from noting the change in time of the alongshore position of wave
peaks. From examining the movement of individual isotherms along the
50 fm isobath, a value of ~ 11 cm s™! is obtained. Growth rate is again a
difficult property to estimate, but the e-folding time during this time period
appears to be ~ 2 days, somewhat shorter than observed in the previous
sequence of images.

The results from these two case studies of alongshore meanders in the
coastal upwelling front off Oregon provide estimates of wave properties
which can be compared to predictions from the simple two-layer stability

model. The observed wave properties are

alongfront wavelength ~ 31 — 60 km,
phase speed ~ 8 — 14 cm 57! to the south,

e-folding time ~ 2 — 4 days.

Since the properties of the fastest growing wave (i.e. the wave most likely
to be observed as it grows rapidly from an initial disturbance field con-
taining many wave components of varying alongfront scale) predicted by
the stability model are greatly affected by the choice of layer depths and
bottom topography, it is necessary to have an accurate estimate of these
values for the study region off Oregon.

A constant upper layer depth far offshore of the surface front can be es-
timated from examining the vertical section of density displayed in Fig. 1.1.
The value of H, is chosen to be 20 m with a density defect of § = 0.002.
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With these values, the internal Rossby radius of deformation (R) is 6.2 km

‘.
o
A, &, & X, 4

4

and the long internal gravity wave phase speed ((¢'H;)"/?) is 63 cm s™!.
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From Fig. 1.1 it is difficult to determine the interface profile due to the

presence of many small scale features. In the stability model, the interface

l"
P

is modelled as an exponential with an adjustable e-folding scale. It was

PR

decided to use a = 1.0 as a reasonable first guess, rather than estimate

MO NN
(A
[ A SN

an appropriate e-folding scale for the interface from observations. As de-
scribed in section 5.3, increasing a will make the interface rise more steeply
to the surface, increase the maximum velocity at the surface front and, as
a result, increase the growth rate of the fastest growing wave. However,
the wavenumber of the fastest growing mode will not be greatly affected
by a change in o (see Fig. 5.10). With a = 1.0, the maximum upper layer
mean flow velocity is 63 cm s™! to the south at the surface front. This value
is consistent with the geostrophic velocity estimates of Curtin (1979) who
found velocities of ~ 40-50 cm s™! at 20 m depth near the surface front.
For the above reasons, the model interface parameter is chosen as a = 1.0.

The cross-shelf bottom topography varies alongshore in the study region
(Fig. 6.2), an effect which is not included in the simple stability model.
This omission is discussed further in chapter 7. The cross-shelf bottom
topography used in the stability model is displayed in Fig. 6.5. Other
cross-shelf sections in the region will have more steeply or more gently
sloping continental shelves, but the topography displayed in Fig. 6.5 is
fairly representative. As discussed in section 5.4, an increase in the bottom
slope will decrease the growth rate and the alongfront wavenumber of the
fastest growing wave and a decrease in the bottom slope will have the
opposite effect. Again, in an effort to use the simple stability model to get
an estimate for the unstable wave properties, the topography displayed in
Fig. 6.5 is deemed a realistic choice. Also shown in Fig. 6.5 is the scaled
bottom slope parameter s as a function of cross-shelf distance. This value
is obtained by multiplying the actual physical bottom slope by R/H,. As
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noted in section 5.4, with a = 1.0 a value of s < —1.0 beneath the surface
front will stabilize the front. The bottom topography in Fig. 6.5 contains a
range of the values of s, so it may be anticipated that the offshore location
of the surface front will determine its stability properties. Another point
to keep in mind is that deeper lower layers decrease the growth rate and
alongfront wavenumber of the fastest growing wave (Fig. 5.9). Therefore,
it may be anticipated that the fastest growing mode will occur when the
surface front lies over a weakly sloping bottom in shallow water.

Partial growth rate curves for three values of the distance between the
surface front and the coast (z;) are displayed in Fig. 6.6. The dimensional
offshore position of the surface front is obtained by multiplying the nondi-
mensional value z; by R = 6.2 km. In addition, no unstable waves are
found for a model with z; = —2.0 R (—12.4 km). The largest value of the
fastest growing wave’s growtn rate occurs for z; = —3.0 R (—18.6 km).
This mode has an alongfront wavenumber of ! = 0.75. The maximum
growth rates for z; = —2.5 R (—15.5 km) and z; = —3.5 R (—21.7 km)
are less, but occur at a wavenumber only slightly less than that found for
z; = —3.0 R. The dimensional properties of these fastest growing modes
are obtained by multiplying {~! by 27 R to get alongfront wavelength, o;!

1/2

by f~! to get e-folding time and ¢, by (¢'H1)'/? to get alongfront phase

propagation. The results for this range of z; are:
alongfront wavelength 52 — 56 km,
phase speed 1 -2 cms™! to the south,
e-folding time 5 — 8 days.
The alongfront wavelengths predicted by the two-layer stability model are
within the range of the observed values. However, the model underpre-
dicts both the phase speed toward the south and the growth rate. These
properties may be modified by adjusting the model input parameters. For
example, increasing a (i.e. making the model front rise more sharply to

the surface) will increase the phase speed toward —y and decrease the e-
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VC::.: folding time due to the increased vertical shear. The vertical section of '
%-c._‘ density in Fig. 1.1 provides an indication that the pycnocline may rise to ;
\"‘. the surface sharply. Another possible explanation for the underprediction ‘
V~ of phase speed and growth rate is the lack of stratification beneath the h
::::.h model front. Underlying stratification may isolate the upper water column !
,‘~ form the influence of the sloping bottom. This point is addressed further "
Lo in chapter 7 below. However, given the best guess input parameters used
~r here, the simple two-layer stability model predicts properties of the fastest
‘:_:’:J growing wave which are fairly close to the observed values. Therefore, the
o existence of growing alongfront meanders on coastal upwelling fronts in this
:j::: region may be interpreted in terms of an internal instability process.
,4\ One final note concerns the effect of linearized bottom friction on the
:-\ unstable wave. As discussed in section 5.5, when the frictional damping ¢
j‘: time scale is long compared to the e-folding time scale of the most unstable
.i-’:-j wave, the effect of friction will be to decrease the growth rate of the fastest
{ growing mode, increase its phase speed toward —y and shift its wavelength
:'f only slightly (see Fig. 5.16). An estimate of the frictional time scale for the
i E_‘ model front off Oregon using A, = 0.04 cm s~ ! is 18 days. Since this time
:_‘ scale is long compared to the growth rates predicted by the inviscid model !
D) (5-8 days), bottom friction is expected to decrease the fastest growing
_,::‘f.: wave’s growth rate and increase its phase speed to —y. In fact, running the
':'_‘:'.E', viscous stability model with a bottom friction parameter of A, = 0.04 cm s™!
:-.::.( results in the following wave properties v
!‘,_ alongfront wavelength 37 — 43 km,
_’:',:: ' phase speed 3 — 6 cm s™! to the south,
e e-folding time 7 — 11 days.
h-r' In summary, bottom friction shifts the predicted phase speed closer to the
observed values, but contributes further to the model underprediction of !
\3"3 growth rate. ;
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o 6.3 Nova Scotia
::3:;:: Recently, Petrie et al. (1987) presented observational evidence for unstable
\ waves on a coastal upwelling front which formed off the east coast of Nova
| ;E:: Scotia. During the month of July 1984, a weak but persistent alongshore
,.\, wind blew in an upwelling-favorable direction (Fig. 6.7). In response, cold
:-:.'.' saline water was upwelled at the coast forming an offshore surface front. An
alongfront meandering with wavelike characteristics was observed to grow
{:E on this surface front. A satellite SST image from July 25 near the end of
X l';-»j the period of upwelling-favorable winds is presented in Fig. 6.8a. A chart
,:t with a latitude-longitude grid, place names and the offshore location of the
® shelf break (as indicated by the 200 m isobath) is included in Fig. 6.8b.
"", The waters along the coast which appear white have a temperature of
::_E:: 10-14° C. The gray areas inshore of this band have temperatures as low
’ g as 4° C. The dark gray waters offshore of the white upwelled band are
warmer than 14° C. The light area to the southeast has temperatures of
o 18-22° C. A Gulf Stream ring with temperatures ~ 26° C is represented by
| _,:: the nearly black, circular region in the center at the bottom of the figure.
:‘.}“-: Three large meanders in the coastal upwelling front extend offshore between
by Halifax and the southwest tip of Nova Scotia. There is also evidence for two
) more, smaller amplitude, meanders along the front to the northeast. These
-J__\ perturbations are fairly evenly spaced alongshore and have a wavelength in
sl the range of 50-75 km (Petrie et al., 1987).
Ko The growth of these meanders can be seen in a time sequence of satellite
.-’ SST images presented in Fig. 6.9. The earliest image taken on July 7
;x (Fig. 6.9a) shows very little cold upwelled water near the coast. The image
,';‘_ from a week later (July 14, Fig. 6.9b) shows a much larger region of cold
s water along the Nova Scotian coast and around into the Bay of Fundy.
-‘;7\5 The alongfront perturbations in the surface front have begun to form at
:;','.:' this time. The three southernmost wavelike meanders grow to rather large
5
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Figure 6.9: Series of satellite SST images: (o) Jolv 70 (b)) July 11 (c)
July 21 (d) July 250 (e) July 31 and, (f) Angast € From Petrie et al.,
1987,
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amplitude by the July 21 SST image (Fig. 6.9c). The image in Fig. 6.9d
is the same as that shown in Fig. 6.8a, and shows the fully developed
meanders extending up to ~ 75 km away from the initial surface front.
In the following weeks (July 31, Fig. 6.9e and August 6, Fig. 6.9f) the
area of upwelled water decreases in size and warms. At the same time the
alongfront meanders decrease in size.

From this series of satellite SST images the existence of growing frontal
perturbations is clearly established. Note the very small propagation speed
of the meander pattern. By superimposing successive images, Petrie et

al. (1987) find a phase propagation to the northeast in the range of 0-

2.0cms~!. These features grow quite rapidly as is evident in Fig. 6.9. Petrie

et al. (1987), using additional SST images not presented here, estimate
the e-folding time to be of order several days. In summary, the observed
unstable wave properties are
alongfront wavelength 50 — 75 km,
phase speed 0 —2 cm s™! to the northeast,
e-folding time several days.
As was done for the case study off the coast of Oregon, estimates of
layer depths and bottom topography need to be made in order to predict
wave properties from the two-layer stability model. No detailed subsur-

face density sections across the upwelling front are available from this time

13

period, but two hydrographic stations were occupied on July 29 and 31

LIRS

(Fig. 6.10). One station is located just off the coast near Halifax within the

band of cold water and the other is located ~ 75 km offshore, outside the

AL I

)
R

cold band. The inshore station has lower temperature and higher salinity

(hence greater density) in the upper 15 m of the water column. As Petrie et

al. (1987) note, these characteristics are consistent with coastal upwelling.
The offshore station allows an estimate of 20 m for H, with a density defect
of 6§ = 0.003. This gives a long internal gravity wave speed of 76 cm s™!

and an internal Rossby radius of deformation equal to 7.4 km.
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off Halifax. From Petrie et al., 1987.
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The bottom topography off the east coast of Nova Scotia is rather com-
plicated. The water depth increases rapidly nearshore reaching a value of
100 m within 10-12 km of the coast. Offshore of this the bottom slopes
gently with a nearly constant linear value of ~ 1 x 1073 (Petrie et al.,
1987) to a deep trough ~ 80 km offshore. Finally, an offshore bank gives
way to a steep continental slope beginning at ~ 180 km offshore. Since
the satellite SST images indicate that the surface front lies over the region
of approximately constant bottom slope, the two-layer stability model was
run with a linearly sloping bottom next to a vertical coastal barrier as in
section 5.4. The final necessary model input is the offshore distance to the
surface front which is estimated from the satellite SST image to be ~ 2
R (~ 15 km). This places the surface front in water of 110 m depth or
5.5H,. Since no details of the cross-front subsurface density structure are
available, the interface parameter a is chosen equal to one.

With these choices the stability model predicts the following properties
for the fastest growing wave

alongfront wavelength 74 km,
phase speed 1.0 cm s~! to the northeast,

e-folding time 10 days.

The predicted wavelength and phase speed are within the range of observed
variability. However, as was the case off Oregon, the model underpre-
dicts the growth rate of the fastest growing mode. Again, the model input
parameters may be varied. For example, a 20% increase in the vertical
shear (obtained by increasing a to 1.2) results in no change in alongfront
wavenumber, but increases the alongfront phase propagation to 2 cm s™!
to the northeast and decreases the e-folding time to 7 days. Another possi-
bility, as mentioned in conjunction with the example from Oregon, is that
underlying stratification may isolate the upwelling front from the stabilizing
effect of the sloping bottom.

Another consideration is the reversed bottom slope between the deep
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trough ~ 80 km offshore and the bank which reaches its shallowest point ~
160 km offshore. Even though the satellite images show that the upwelling
front is never found that far offshore, it is of interest to analyze the effect
of the reversed bottom slope on the properties of the fastest growing wave.
Running the model with the surface front 100 km from the coast where the
water depth is ~ 200 m and the bottom slope is reversed, results in an e-
folding time for the fastest growing wave which is approximately half of the
value state above. This shows the strong influence of bottom topography
on the stability of the two-layer model. Again, the presence of underlying
stratification may isolate the upwelling front from the destabilizing effect of
a reversed bottom slope.

Bottom friction may also be included in this model. Since the water
depth is large beneath the surface front, the frictional time scale is expected
to be long. Using a value of A, = 0.04 cm ™! (most likely an overestimate
for this shelf region), this scale will be ~ 30 days. Clearly, the fastest
growing wave in the inviscid model grows on a time scale shorter than this.
Running the viscous stability model with A, = 0.04 cm s~! results in little
change in the unstable wave’s growth rate, but shifts its wavelength to
~ 60 km and its alongfront phase speed to ~ 4 cm s~! to the northeast.

Petrie et al. (1987) use a three-layer quasi-geostrophic model to study
this phenomenon since they find that a two-layer quasi-geostrophic model
without horizontal shear is completely stabilized by the strong bottom
slope. The presence of a lower layer with zero mean flow effectively iso-
lates the two upper flowing layers from the stabilizing influence of a sloping
bottom. Even though the large interface displacements associated with
coastal upwelling fronts make the quasi-geostrophic models formally in-
valid, they obtain unstable waves with the properties of the fastest growing
wave in the range of observed values. Their predicted alongfront phase
speed of 4-5 cm 57! to the northeast is larger than that expected from the

observations. They suggest that adding a 3 cm s™! depth-independent flow
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to the southwest in the system will bring this predicted value in line with

observations. The authors also apply a constant depth two-layer shallow

water equation model (Killworth et al., 1984 and section 5.3 in this study)

to the problem. Again, predicted wave properties are within the range of

observed values except for an excessive northeastward phase propagation.

The results presented here are from a model which is more physically

realistic than either of the above two models. Large interface displacements

- and strong bottom slopes are allowed. Two points are noteworthy. The first

. ' is that sloping bottom topography representative of the continental shelf off

;—_ the east coast of Nova Scotia does not stabilize the two-layer frontal model

as it did the two-layer quasi-geostrophic model with uniform mean flow in

- each layer. Second, as discussed in section 5.3, a sloping bottom induces a

: _-_Z:j shift in the phase speed of the unstable waves. The sense of this shift is to

: add a component in the direction that topographic vorticity waves propa-

gate (with shallow water on the right in the northern hemisphere). Since

the modelled unstable frontal waves propagate in the down-:.ream direction

! (toward the northeast off the east coast of Nova Scotia during the period of

” active upwelling described here), a sloping bottom will decrease the mag-

‘, nitude of the phase speed. The small values of alongfront phase speed to

the northeast observed for unstable waves in this area and predicted by the

o stability model is likely due to this effect.
2
,.: 6.4 Southwestern Africa

The coastal ocean off the southwest tip of Africa is an area of active up-

-;-s.

welling (Bang, 1973). During the austral summer, winds from the southeast

‘e drive an upwelling circulation which creates coastal upwelling fronts. Up-
welling has been observed from south of Cape Point (34° S) to well north N
'.\. of Hondeklip Bay (30° S) (Fig. 6.11). A number of regions of locally in- 3
; ,_ tense upwelling exist within this area (Taunton-Clark, 1985). Though these d‘
" :
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.?-: upwelling structures are three-dimensional, there are areas where a fairly
-_\ two-dimensional front forms alongshore. One such area is west of Cape
. Town between Cape Point and Cape Columbine. A number of observa-
v tional studies have taken place in this region including the collection of a
-' large set of aircraft derived SST maps (Taunton-Clark, 1982). The purpose
_’: of this section will be to describe the growth of an alongfront meander on
N the coastai upwelling front as portrayed in a series of daily SST maps. Es-
A timates for the scales of the disturbance and a comparison to the results of
K- the simple stability model will be made.

_: During January 17-28, 1980 the wind consistently blew in an upwelling
‘:f. favorable direction (Jury, 1984). Within this period, the wind stress is
. fairly constant at ~ 1 dyn cm™? from January 21-27. On January 22 an
5 aircraft SST survey was done from south of Cape Point to north of Cape
: Columbine (Fig. 6.12a). The alongshore spacing of the sampling grid (not
shown) is ~ 25 km. Cold water is found adjacent to the coast with an
¢ § upwelling tongue extending northward from the Cape Peninsula (34° S).
‘ Offshore of this tongue is a region of compressed surface isotherms running
S:: alongshore over most of the survey region. This coastal upwelling front,
o centered on ~ 50 km offshore, is the region of interest here. On Jannary 22
. there appears to be an alongfront meander with two peaks away from the
.::.: coast at ~ 33° 15’ S and ~ 34° 15’ S. The distance between these two peaks
:j is ~ 125 km. On January 23 (Fig. 6.12b), most of the SST features are
::.: still present from the previous day. The offshore surface front seems to have
‘ sharpened in the southern half of the study region. The alongfront meander
o~ is still present and appears to have shifted slightly northward (e.g. see the
:i: 15°isotherm). At the southern end of the survey region another peak in the
:i alongfront meander is now evident.

: The SST map from January 24 (Fig. 6.12c) shows the amplification of
v s the alongfront meander. All three peaks away from the coast increase in
f: amplitude whereas the inshore peaks do not. This is most likely because
‘..:”‘

v
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the bottom topography restricts their movement cross-shelf. Again, there
is some propagation of the meander pattern to the northwest. The final
SST map in this case study is from January 25 (Fig. 6.12d). Growth in
the alongfront meander is evident, but the pattern has not shifted in the
alongfront direction significantly. Note the sharpening of the surface front
at the inshore peaks especially near 33° 45’ S. This apparently occurs be-
cause the cross-shelf movement of the inshore meander peaks is restricted by
the topography resulting in a compression of the surface isotherms. There
is some evidence that the wave is steeper downstream of regions where the
upper layer is shallow (e.g. the peak near 34° 15’ S). This pattern is con-
sistent with the wave motion in the unstable mode found from the simple
stability model as discussed in section 6.2 above. It should be noted that
wave steepening is a nonlinear effect, but the predictions of the linear wave
motion suggest that this effect will occur.

As in the previous studies off Oregon and Nova Scotia, quantitative
estimates can be made for the properties of the observed waves described
qualitatively above. The results are, where individual estimates used are
given in Table 6.3,

alongfront wavelength ~ 81 — 150 km,
phase speed ~ 10 cm 57! to the northwust,
e-folding time ~ 6 days.
To obtain predictions for the same properties, the simple stability model
is run with bottom topography from a cross-shelf section originating near
33° 35’ S (Fig. 6.13a). The bottom slope parameter s is shown as a function
of cross-shelf distance in Fig. 6.13b. No subsurface density information is X
available during the time the SST maps discussed above were calculated. To
get a value of H; and é for input into the model, vertical sections through
similar upwelling fronts during the same season but for a different year are
used (Bang, 1973). The values used are H, = 70 m and § = 0.0015 which
lead to a Rossby radius of 12.4 km and a long internal gravity wave phase
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speed of 101 cm s~. Again, the interface parameter a is chosen equal to
one as a reasonable first guess. From the aircraft SST maps (Fig. 6.12) the
front is ~ 40-50 km offshore which, given the bottom topography displayed
in Fig. 6.13, places the front in 150-170 m of water. The properties of the
fastest growing waves using the above model inputs and varying the offshore

position of the surface front are

alongfront wavelength 111 — 120 km,
phase speed 1—2cm s~! to the northwest,
e-folding time 14 — 16 days.

While the predicted alongfront scale compares reasonably well with the
observed values, the phase speed and growth rate are too slow. Both these
values could be increased by increasing the steepness of the interface profile
(i.e. making the overall vertical shear near the surface front larger). As in
the previous case studies, the presence of underlying stratification, an effect
omitted in the present stability model, may isolate the upwelling front from
the stabilizing influence of a sloping bottom.

To assess the influence of bottom friction on the stability properties of
the system, a comparison between the e-folding time of the fastest growing
wave and the frictional damping time scale can be made. Using a value of
A. = 0.04 cm s}, the frictional time scale is estimated as ~ 14 days. This
time scale is comparable to the e-folding times found above, so the possi-
bility of destabilization by friction, as discussed in section 5.5, is possible.
Results from a viscous model using the above value of A, yield the following

wave properties

alongfront wavelength 85 — 92 km,
phase speed 5 — 10 cm s~} to the northwest,
e-folding time 8 — 10 days.

Linearized bottom friction loes improve the model estimates of phase speed

and growth rate, but the model still underpredicts the growth rate. In
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P :::: summary, even in the presence of frictional damping the simple stability
:\% modei predicts unstable wave properties in the range of observed variability.
A One difference between this case study and the previous observations
s off Oregon and Nova Scotia is the presence of a constant upwelling favor-
::::'_:: able wind stress throughout the observation period. In the previous case
::::'_'.:E: studies, upwelling favorable winds occur in events separated by periods of

A weak or downwelling favorable winds. The simple stability model developed
o here does not include wind stress and should, therefore, only be compared
'E,: to observations obtained during these periods of weak winds between up-
:-::-: welling events. However, as discussed in the beginning of chapter 3, the
f"::/' stability model may apply equally well to basic state flows which exist as

- a result of a steady-state balance between wind forcing and dissipation. In
‘: . other words, these two processes will not enter the stability analysis other
f,_ than through their effects on the basic state flow field. This case study off
‘.';'_'.:, southwestern Africa suggests that the simple model may be used to ana-
lyze the stability of a coastal upwelling front in the presence of wind stress.
x:; The introduction of time-dependence in the basic state flow field from the
:'_ action of wind stress may, however, affect the stability of the front. This
'i’:::,‘f point is discussed further in chapter 7 below.

;) A final caveat that should be mentioned, which applies to all the obser-
n‘f_w vational comparisons, is that the observed meanders are finite amplitude
A i{' phenomena while the model predictions are formally valid only at small am-

oA plitude. Nevertheless, given the inaccuracies in specifying the basic state

flow field as well as the model limitations, the alongfront variability ob-
served on coastal upwelling fronts off the southwest tip of Africa can be
interpreted in terms of unstable frontal waves.
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6.5 Summary
o Observations from three regions of active upwelling show the existence of
alongfront variability on coastal upwelling fronts. The properties of the
_-'_-:: observed wavelike disturbances and the predictions from the simple two-
< layer stability model are in reasonable agreement. Although the observed
e meanders are finite amplitude, they still appear to be growing which sug-
- gests that the predicted growth from the linear theory may continue as the
:f:_:‘:: flow becomes nonlinear. The model prediction is best for the alongfront
:::E.:' scale of the meanders. Discrepancies between the model estimates and the
'-c observations can be due to several factors. Inaccuracies in specifying the
_2{‘ basic state flow due to limited subsurface density information will lead to
NN differences between observed and modelled wave properties. There are also
\_E a number of omissions in the present stability model (e.g. no wind stress)
o which are definitely present in the observed upwelling systems. These omis-
{ sions will be discussed further in the next chapter. However, the fact that
‘~3’ the simple stability model presented here predicts wave properties in the
:J'_j range of the observed values, supports the idea that alongfront variability
o
y

can be interpreted in terms of unstable frontal waves.
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Date Wavelength Phase speed cross-front
- estimates (km) | estimates ( cm s™!) peak-to-peak

amplitude estimates (km)
1/22/80 125 4, 9,10

5,16,6,6,9, 12
1/23/80 150, 81 11,2, 14, 16, 4
54,9, 34,21
1/24/80 132, 95 6,2,10,5,7
- 29,2, 26,4
- 1/25/80 125, 90 12, 8, 11, 11, 20, 16
e | | average = 114 km | average = 10 cm s~ | B

-*.

T

LA
[

2
.l' ..' :' LR 'n'

Table 6.3: Estimates of the properties of observed alongfront variability off
iy the southwest coast of Africa.
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Chapter 7

Discussion

7.1 Introduction

In the previous chapters the existence of unstable waves on model coastal
upwelling fronts has been demonstrated. Observations of alongfront vari-
ability from SST maps of the coastal ocean provide evidence for the ex-
istence of these unstable waves in nature. A more detailed connection
between the stability model and the real ocean is difficult because of the
omissions made in simplifying the model. The first part of this chapter will
be a discussion of these omissions, concentrating on the possible weaknesses
of the present model. Possible future modelling efforts will be outlined
which include the more important processes omitted in the present study.
Following this, the possible connection between the finite amplitude form
of the unstable frontal waves and the cross-shelf flux of water properties
will be commented on.

7.2 Simplifications and Omissions

Some of the simplifications made in the stability model presented here are
potentially more serious than others. The less troublesome simplifications
will be addressed first, followed by a look at three of the more serious omis-




sions beginning with the small amplitude restriction of the model. Mod-

elling the density structure associated with a coastal upwelling front as two
homogeneous layers can be criticized for several reasons. Layer models are
usually employed to simplify the analysis, but severely 1:strict the vertical
resolution of motion in the system. This restriction is certainly present in
the model developed here. Further, since the interface rises to the surface,
lack of vertical structure in the density field necessarily becomes lack of
horizontal structure in the surface front. Vertical sections of density across
coastal upwelling fronts (Fig. 1.1) show a thin region of compressed isopy-
cnals. Thus, modelling this region as a sharp interface between layers is

reasonably realistic. Representing the water column beneath the interface

N as a single homogeneous layer omits the possible influence of the under-
5":': lying stratification apparent in Fig. 1.1. Since the motion of the unstable

mode discussed in chapter 5 predominates in the upper layer, the density
structure beneath the interface is not expected to affect greatly the wave’s
properties. However, as discussed in section 5.4 and chapter 6, the underly-
ing stratification may isolate the upper water column from the influence of
the bottom. As a result, a sloping bottom may not stabilize the front to the
degree it does with a homogeneous lower layer. In addition, the damping
effect of bottom friction may be reduced. The result of both these effects is
that the front may be more unstable than predicted here. In addition, an

,.'___: increase in the wave propagation speed in the direction of the basic state

: flow would result. The underprediction of phase speed and growth rate i
by the model when applied to observed frontal meanders is discussed in

.};‘ chapter 6.

*o Layer models in the presence of finite bottom topography have also

been criticized for their incorrect description of the topographic vorticity

waves present in the system (Chapman, 1983). This problem is not an-
ticipated to affect the instability results presented here because the sta-

ble modes involved in the unstable resonance are frontally-trapped not
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coastally-trapped.

The lack of cross-frontal mixing or interfacial friction which may lead
to mixing is another weakness of the model. These processes are likely to
be important in the formation and evolution of a coastal upwelling front.
The removal of energy from the upper layer via interfacial friction and the
degradation of the sharp interface and surface front by mixing would most
likely lead to a decrease in the growth rates of the unstable waves predicted
by this simple model. Observations of frontal variability suggest that these
processes do not completely quench the unstable waves.

Linear instability theory is restricted to describing the small amplitude
behavior of unstable waves. A nonlinear calculation is formally required
to describe the evolution of the instability once it reaches finite amplitude.
Sometimes, waves which grow exponentially with time at small amplitude
stop growing or go into limit cycle oscillations upon reaching finite ampli-
tude. The reader is directed to Pedlosky (1986) for a description of these
processes and a reference list. The small amplitude unstable frontal waves
found here may be subject to this type of behavior after the initial period
of predicted exponential growth. However, observations show that mean-
ders in the coastal upwelling front can grow to finite amplitude and even
break into detached eddies. Since these features have scales comparable to
those predicted here, it is believed that the linear, small amplitude theory
provides results which are likely to hold up, at least qualitatively, at later
times as the flow becomes nonlinear.

A potentially fruitful way to study the finite amplitude behavior of these
unstable waves is to use a fully nonlinear, time-dependent numerical model
of a coastal upwelling front. A model with a number of homogeneous layers
of different density or one with continuous stratification would be appropri-
ate. The coastal upwelling front could be established by specifying the basic
state velocity and density fields such that they are in geostrophic balance.
This could be problematic, since a small amount of noise (present in any
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::;: numerical model) would upset this equilibrium and lead to transient cir-
:: culations as the fluid adjusts to geostrophic balance. This may complicate

) the stability analysis. Another way to establish the coastal upwelling front

;' : is to spin up the model from a state of rest by applying an alongshore wind

f‘_;'_‘: stress. Once the front is established, a perturbation of a specified scale

e N could be imposed. The time-dependent flow field could then be analyzed

'!"_ g at later times looking for growth or decay of this perturbation. A series of

N experiments of this nature can be carried out to detail the finite amplitude

:'_:‘_' behavior of the unstable frontal waves.

::::-: Another possible weakness of the model presented here is the lack of

'_.: wind stress. As described in chapter 2, an alongshore wind stress is es-
e sential to the formation of a coastal upwelling front. The stability model
"

P

presented here takes the fully developed, wind-formed front as its starting

P

point. Some observational evidence suggests that coastal upwelling fronts

£

are more stable (i.e. two-dimensional) in the presence of a strong, steady

wind (Curtin, 1979). After the cessation, reversal or weakening of a wind

-

" P4

:’f::‘: event, the front is observed to meander. Other observaticns, such as those

"::j presented here off the southwest coast of Africa, show that alongfront me-
" anders can exist in the presence of a steady wind. The laboratory models

of Narimousa and Maxworthy (1985) include a steady wind stress which

0%

NN creates a coastal upwelling front. They observe unstable waves for all values
o of the wind stress. The time between the onset of the surface stress and
A
. the appearance of unstable waves is shorter for higher values of the wind
' stress. This is most likely due to the increased vertical shear driven by the
e stronger wind. Comparison of Narimousa and Maxworthy’s (1985) labora-
- tory models with coastal upwelling fronts in nature is suspect since their
= experiments reach an equilibrium state while an actual upwelling front will
v "
o.- migrate continually offshore under the effect of a steady upwelling-favorable
f wind stress and in the absence of dissipation. The above observational and 5
\:'\‘ experimental evidence does not establish clearly the effect of wind stress h
R ":f‘.'
Y
\ ‘\_':\
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on the stability of a coastal upwelling front. The present study also does
not answer this important question.

The stability properties of the front may be affected by changes in the
basic state flow field which arise due to wind forcing. Specifically, a steady
wind stress will drive an upwelling circulation which depends on time until
a steady-state balance between the forcing and dissipation is established.
Prior to the steady state, the alongshore flow speed will increase with time
and the surface front will migrate offshore. Time-dependence in the basic
state flow will also result from the action of a time-dependent wind stress.
The stability model presented here employs a fixed basic state flow. To
model the effect of a wind stress realistically, a model with a time-dependent
basic state flow should be developed. A wind stress may also affect the
stability of a coastal upwelling front through the interaction of the wind-
driven Ekman flow with the front. To model this potential effect, motions
in each of the various Ekman layers must be resolved. Offshore Ekman
flux in the upper part of the water column, flow in Ekman layers adjacent
to the upwelled interface and motion within an Ekman layer at the ocean
bottom must all be included. Analytic solutions to these problems would
be quite complicated. Progress could be made on this problem through the
use of a numerical model. As discussed above, an alongshore wind stress
could be used in a numerical model to establish a coastal upwelling front.
The growth or decay of imposed perturbations could then be studied in the
presence of a steady alongshore wind stress. Alternatively, the wind stress
could be weakened, reversed or removed completely and the stability of the
ensuing flow analyzed. A series of experiments of this type could answer
the question posed above.

A final major weakness of the model, as alluded to in chapter 6 in a dis-

cussion of observed frontal variability, is the lack of alongshore variability

in the bottom topography and/or the shoreline configuration. In chap-

ter 5, the profound influence of the local lower layer depth and the bottom
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::: slope on the properties of the unstable waves was presented. Surely the
E stability of the upwelling front will be different as the alongshore jet flows
\ - between regions of different topography. The theory presented here is valid
o for wave motions with alongshore scales much smaller than the alongshore
- scale of the topographic variability. This may hold true in some regions
-~ ° of active upwelling and the comparisons between the model predictions
‘ and observations is legitimate. However, other observations have suggested
. that alongshore topographic variations are important to coastal circula-
) E?: tion. Studies off the northern California shelf have suggested that regions
v near capes and points are areas of enhanced upwelling (Kelly, 1985) and
_": vigorous cross-shelf velocities (Davis, 1985). How does the alongshore to-
...- pographic variability affect the stability properties of a coastal upwelling
- front? Does the topography create local regions where instability is more
likely? Another possibility is that the scale of the topographic variability
may influence the scale of the unstable frontal waves. To address these
{ questions, the periodic dependence on y of the wave form must be aban-
-_'::: doned or the topographic variations may be made periodic in y in which
case the differential equations will have coefficients which depend on y. Ei-
::'.» ther case leads to a system which is difficult to solve analytically. Perhaps
. the best solution is to analyze a numerical model of a coastal upwelling
'_".? front as discussed above. A series of experiments with different alongshore
:4- bottom topographies and/or coastline variations would help to resolve the
e questions raised above.
;' Even with the omissions discussed above, the simple stability model
}. presented here predicts the existence of unstable waves with properties in
.': the range of observed variability. It is believed that any future numerical
4 modelling efforts would serve to refine, but not refute, the processes and
' results presented here.
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“-E‘ 7.3 Implications
-'_-:\‘.
'::::: The unstable frontal waves discussed in this study could have an important
.' ’ effect on the circulation associated with a coastal upwelling front. As men-
’ tioned briefly in the introduction, the wave may grow to finite amplitude
" and redirect the normally alongshore flow in the cross-shelf direction. The
'.::-:f waves may grow large enough to form detached eddies which remain on
i the shelf disrupting the alongshore flow. Some observational evidence for
:‘- this behavior was presented in chapter 6. Another possibility is that the
‘\'::';. finite amplitude wave peaks away from the coast may grow in the offshore
\ direction until they disrupt the alongshore flow and create strong flows off
;: the shelf. This would serve to transport large amounts of upwelled water
::._\_' off the shelf. These so-called offshore jets or squirts have been documented
b in a number of studies off the west coast of the United States (e.g. Davis,
: 1985; Kosro, 1987). The redirection of the normally alongshore flow by
large amplitude unstable frontal waves is only one possible explanation for

the existence of these strong, narrow, offshore flows. While other mecha-

N
Y ‘.l v

nisms involving variations in alongshore bottom topography, and/or coast-
line configuration and/or wind stress have been proposed (Hartwig and
Brink, 1985), the instability of the flow field associated with the coastal

x
LS P
LR R R AT

b' X

54 upwelling front remains a likely candidate. Currently, an observational and
] :j theoretical research program (Coastal Transition Zone) is taking place to
:,. help elucidate the processes which lead to the formation and evolution of
N these offshore squirts of cold, upwelled water.
g:. Unstable waves on coastal upwelling fronts may also contribute to the
::;:: cross-shelf eddy flux of water properties. In their study of the heat budget
\‘;'_' off the coast of Oregon in 1973, Bryden et al. (1980) found that the cross-
shore eddy heat flux is an important process. They note that the eddy
’e heat flux is directed down the mean horizontal temperature gradient and
j thus removes potential energy from the mean circulation. This behavior is
.. 163
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consistent with the unstable waves discussed here which gain energy from
the mean circulation via baroclinic instability. The presence of a coastal
upwelling front during the time period of their study (Figs. 1.1, 6.2 and
6.3), lends further support to the possibility that the eddy flux came from
the type of instability modelled here. Since Bryden et al. (1980) only ana-
lyzed data from one current meter mooring they were unable to estimate an
alongshore scale for the eddy motions. Recently, Lentz (1987), using data
from three alongshore moorings deployed as part of the Coastal Ocean Dy-
namics Experiment (CODE), found alongshore variability in the cross-shelf
eddy heat flux with alongshore scales less than 56 km. This alongshore scale
provides an upper bound to compare to the size of the finite amplitude ed-
dies which may evolve from the unstable frontal waves modelled here. That
these eddy motions may be due to instability associated with the coastal
upwelling front is further corroborated by the presence of the front near
the moorings during the analysis period of the above study (Lentz, 1987).
Davis (1985), using drifter data from CODE, also found vigorous eddy vari-
ability on scales of 40 km or less. Neither of the above two studies clearly
establishes a lower bound for the alongshore scale of the eddy variability.
The above studies indicate the importance of cross-shelf eddy heat flux to
the heat budget for an area of active upwelling. The cross-shelf eddy flux
of other water properties (e.g. nutrients) is also of practical importance.
The unstable waves discussed here provide a mechanism for the existence

of these eddy fluxes.
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B Chapter 8
N
-
> Yo *
: Conclusions
N
'\-"_
o
- This study of a coastal upwelling front over topography shows that observed
' "' alongfront variability can often be explained in terms of an instability pro-
X cess. An unstable mode is described which gains energy from the basic
N state flow associated with the upwelling front via baroclinic instability.
TN This wave amplifies in the absence of any external forcing. The proper-
b X ties of the fastest growing unstable wave in the system are in the range of
: " observed alongfront variability.
'Oy
o The simple two-layer model developed here uses the geostrophic momen-
o tum approximation applied to the shallow water equations. This system
N allows the presence of a surface front, large horizontal shears and strong
" bottom slopes, features which are not able to be represented in a model
j using quasi-geostrophic dynamics. Allowing divergent flow introduces a
o term in the conservation of wave energy which is not positive definite (see
; chapter 4). The presence of this term allows the growth of unstable dis-
’ turbances with positive, zero or negative wave energy. In the absence of
-ﬁ external forcing, the total disturbance energy (the wave energy plus the
v change in the mean energy due to the presence of the unstable disturbance
. with the latter contribution hereafter calied the mean energy) must be zero.
; Therefore, if the wave energy is positive then the mean energy must be neg-
o ative and vice versa. The other possibility is that both the wave and mean
B
g
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\.: energies are identically zero. In other words, an unstable wave can grow

:::: while exchanging energy with the mean flow so that the net change in the

:":: energy of the system remains zero. The nonintuitive idea of the growth of

. a wave with zero or negative energy can also be rationalized in terms of the

'_.-',.::j exchange of disturbance energies between two stable modes whose alliance

\'\ creates the unstable wave.

By combining the various conservation statements for the global prop-

. erties of the system (potential vorticity, energy, momentum), a stability

:'_:": theorem is established in chapter 4 which allows the a priors determina-

o tion of the stability of a coastal upwelling front. This theorem is basically

.‘ a two-layer version of Ripa’s (1983) theorem. The theorem differs from

9 the traditional quasi-geostrophic theorem by including an additional con-

\ straint on the basic state flow in order to insure stability. This additional

>'.-::_‘.:_' constraint can be attributed directly to the presence of the term which is

:i;:-ﬁ not positive definite in the definition of wave energy. The theorem success-
! ] fully indicates the stability or possible instability of previous frontal models

\ and of the flows associated with the coastal upwelling front of interest here.
'j:E:_': An unstable wave on a coastal upwelling front over a flat bottom next X
-f_;:'.‘ to a coastal wall is described in detail in chapter 5. The structure of the

A)‘ unstable wave is dominant in the upper layer and is trapped within ~ 1

:;’ Rossby radius of the surface front. The upper layer flow field is partly

. ageostrophic. The lower layer flow is weak, more geostrophic and consists

,_, of closed cells of circulation beneath the surface front. The unstable wave

."-, propagates phase in the direction of the basic state flow. The energy con-

::i servation statements involving the new term, which is not positive definite,

":" are confirmed by direct numerical evaluation using the solutions to the

":;\._ generalized algebraic eigenvalue problem. The effect of varying the model

o parameters is presented. Moving the front closer than ~ 2 Rossby radii to

f;:.:'.’ the coastal wall results in a decrease (by a maximum of ~ 34% when the

surface front lies immediately adjacent to the coastal barrier) in the growth

N
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rate of the fastest growing wave. Increasing the overall vertical shear of the
basic state flow, by either decreasing the lower layer depth or increasing
the steepness of the interface, results in an increase in the growth rate of
the fastest growing wave. The effect of changing the lower layer depth is
particularly dramatic, leading to complete stability for uniform potential
vorticity flows over an infinitely deep lower layer.

Since realistic coastal upwelling fronts occur over continental shelves,
the effect of sloping bottom topography on the stability of the system is
investigated. A model with a linear bottom slope indicates that a bot-
tom sloping in the same sense as the interface decreases the growth rates
of the unstable waves in the system. The sloping bottom also decreases
the alongfront wavenumber (increases the alongfront scale) of the fastest
growing wave. When the bottom slope exceeds the maximum slope of the
interface, the flow is completely stabilized. This result is the same as in
traditional quasi-geostrophic theory. However, this complete quenching of
the unstable frontal waves is not likely to be relevant to realistic coastal
upwelling fronts for two reasons. First, continental shelves contain regions
of varying bottom slope so that somewhere the interface will slope more
steeply than the bottom. This result is verified in a comparison of a model
with arbitrary cross-shelf bottom topography to observed alongfront vari-
ability (chapter 6). Second, the presence of any density structure (either
additonal layers or continuous stratification) beneath the interface may in-
sulate the upper part of the water column from the effects of a sloping
bottom. The present model excludes this effect since the lower layer is
assumed homogeneous. In summary, for realistic coastal upwelling fronts
the presence of sloping bottom topography decreases the growth rates of
the unstable waves and increases the alongfront scale of the fastest growing
mode, but is not expected, in general, to completely quench the instability.

The importance of bottom friction in coastal circulation motivates its

inclusion in the present stability model. When the e-folding time scale of
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the unstable wave is short compared to the frictional damping time scale,
bottom friction decreases the growth rates of the unstable waves by extract-
ing energy from the wave. The presence of bottom friction also introduces
a slowly growing mode at high wavenumbers due to the additional vorticity
source. Since the fastest growing unstable mode is strongest in the upper
layer, the presence of the lower layer insulates the wave from the influence
of bottom friction. Bottom friction may also destabilize flows which are
otherwise stable in the absence of dissipation, but the resulting unstable
modes will have very small growth rates. This result is analogous to the
destabilization of quasi-geostrophic flows by friction in the presence of the
B effect. The main result for typical coastal upwelling fronts is that bot-
tom friction will not completely quench the unstable frontal waves. Other
forms of dissipation (e.g. interfacial friction) might possibly have larger ef-
fects, but observations of alongfront variability suggest that unstable frontal
waves are not eliminated by their presence.

The predictions for the properties of the fastest growing waves from the
simple two-layer model are within the range of observed alongfront variabil-
ity from several areas of active upwelling as described in chapter 6. Even
though the model is only formally valid for small amplitude disturbances
and the observed motions are definitely finite amplitude, the model pre-
dictions are in fair agreement with observed properties. A more detailed
comparison would require refinement of the present stability model. Three
possible improvements are the extension to finite amplitude, the inclusion
of wind stress (and thus a time-dependent basic state flow) and alongshore
topographic variations. A potentially successful way to study these effects
is to use a full nonlinear numerical model of a coastal upwelling front.
However, even without these refinements, the results presented here sug-
gest that observed alongfront variability in the coastal ocean can often be
interpreted in terms of the instability of a coastal upwelling front.
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Appendix A

This appendix contains the algebraic details of the derivations of many
of the conservation statements in section 4.2.

Conservation of Potential Vorticity

The derivation of the conservation of potential vorticity in each layer
from the full, nonlinear geostrophic momentum equations (3.5) and (3.6)
is as follows. Note the differences from the traditional shallow water equa-
tion development (Pedlosky, 1986). Details of the derivation for the upper
layer are presented with the lower layer derivation following in an anal-

ogous manner. Taking the curl of the upper layer momentum equations
[8(3.5a) /3y + 8(3.5b)/dz] yields

D
E(gl" + gl") + (ul' + vl') + (vll + ul')gl.' + ullgl.l + vllgll' = o.
(A1)

Rewriting (3.5¢c) as

1_ D

et ) = T ae) D

(h1 + 6¢,) (A-2)

allows (u;, + v1,) to be replaced in (A.1) to yield

2( + ) - _._1_2
Dt 1 TS24y (hy +6¢,) Dt

(vio +41,)Sy,, + 81.6y,, + 91,6, =0. (A.3)

To replace the term in (A.3) involving (v;. +u,,) take 8(3.5a)/0z and add
to 9(3.5b) /3y to obtain

D
2E§x., + (01. + ul,) + (ul, + 01,)§1” + (01, + l)g‘," + (ul, - l)glu = 0.
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Substitute for (uy, + v1,) from (A.2) and rearrange to get

D ¢, D
(v, +uy,) 251, Tt mm(hx +6¢,) -
(vi, + 1)y, — (wa, — 1)§,,, - (A.4)
Multiplying (A.4) by ¢,,, and substituting in (A.3) yields

D (§1. -1) D
'b—t(S'x..‘*'gx,, §1.,) (s + 6¢,) Dt( 1+6¢,)+

$ralvn, = €y, (w1, — 1)+ ¢ [v1, — ¢, (v1, +1)]=0. (A.5)

Finally, the last two groups of terms in square brackets are replaced using
¢y,, times (3.5a) plus ¢, times (3.5b) or

D
E(S.l,.gx,,) + € (v, + (v, - 1)¢,,, + v1,6,,,] +

$1,,lur, + (v, + 1)¢,,, + v1.$,,.] =0.

As before, (A.2) is used to replace terms proportional to (u;, + vy,) with
the result

D 1 D
DS 181,,) = (§1,.60,, + 61, + S’x,,)mm(hx +6¢,)-

gl,. [uls - gl.,(ulu - l)] - gl,,[vl’ gl,, (1)1. )] = 0' (A‘s)
Adding (A.5) and (A.6) yields the final result

D
Dr S1ee +61,, ~ 61, +60,6,,) -

_ e 1 b -
(1 + clll + gl., gll' + gl.lgl") (hl + 6{1) Dt (hl + 6(1) =0

'
&

Ly

or

sty

3
Aetx

o}

D _ (l t 6, T8, fz,' + S.1--(11!) =0
Dt hy + 6¢, B

from which (4.1a) and (4.1b) follow. The derivation of potential vorticity

congervation in the lower layer follows from a similar manipulation of (3.6).

170 {




L AnE soh S S - S Eaih i I Bl SR Sl ik S e T

Conservation of Energy

The derivation of the conservation of energy (4.3) begins by forming
expressions involving the kinetic energy in each layer. Multiplying (3.5a)
by (h1 + 6¢,)¢,, and (3.5b) by (hy + 6¢,)S,, then adding yields

D (i +¢3 D (s}, +¢3
(h1+5§1)Dt1( - 2 1')+h2th( T'2 Tv):

—(h1 + 6¢,)(u18y, +vi$y,) — ha(ua$y, +valr), (A.7)

where
D_D . .2.,,° i =1,2
Dt, Dt Yoz "oy $=L5

Now, (3.5¢) times (¢}, + ¢} )/2 plus (3.6¢c) times (7, + ¢7,)/2 gives

+
(_§1, 2 S.l’) —(h1 + 5§1)+

+
Gt 6, gl ) [u1(ka + 6¢,)]e + [va(hs + 6¢,)]y} +
2
Adding (A.7) and (A.8) yields :
2 2
aﬁ (h1 + 8¢,) (g" g‘)+hz(wl]+ ;

2
+ 2 3 + 2
o [u,(hl +6¢,) (——-1“- 2 i ) + ughy (———-lgf- 5 {, )] +

P 1 RPN
3y vi(hy + 6¢,) (——“"‘gl' 2 &1 ) + v2hy (___,_{T, 2 ks )] =

—(hy + 5(1)(“15'1. + vlfl,) - hi(“ﬁr. + ”2§T,)- (A.9) %

(S'T. $r, + 61, ) 9 he+ (ﬁ-_’*ﬁ}.) [(ushs)e + (v2hs),] = 0. (A.8)
7)
g

d

The terms on the right-hand-side of (A.9) can be eliminated by forming
an expression involving the potential energy. Multiplying (3.5c) by ¢, and
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‘ (3.6c) by ¢ = (1 — 6)¢, — h, then adding gives J
3 (h? 3
3t ( 2 +6¢,h ) + ¢ylui(hy +66,)]: + ¢ [vi(he + 6¢,))y + %
e, Sr(uzha)s + r(vzha), = 0. (A.10) &
Adding (A.9) and (A.10) yields o
L 3 ¢t +¢ T, + 6%, ) | b '
B a[(in+¢$g:,)( : 5 ")+ 2 — 2‘4-&’1 .‘
“f a r =
ne - |k + 6¢,) ¢, S’,,) + ughy 1, + CT') + >
g oz L 2 2 -
‘ “\ ;J’
; ¢rua(h1 +6¢,) + §T“2h2] + )
o 3 [ ¢l +¢} ¢3 + 6% e
A —_ h = ¥ £ ¥ =
i By .01( 1+ 6¢,) ( 2 + vahe ( > + 5
L
E ] glvl(hl + 6{1) + grvzhg] =0. r-
'. . This expression is then averaged over one wavelength in y and over the full
; : z-domain. For the upper layer, the integration is carried out from —oo to A
| Ej the surface front. The integration in z requires the application of boundary S
f _‘: conditions which are discussed in detail in section 5.2. Basically, the cross- !
' front velocity in each layer vanishes far from the surface front or, in the case “l
O of the lower layer, vanishes because of a coastal barrier. The final result is ';'
v 'S
- a ¢1, + ¢ $T. + 6T, A
5-. y
: where [( )da represents the integration described above. Equations (4.3) =
£ follow by neglecting terms of 0(6). "
b2 o
:',.: Conservation of Momentum ',:f
. " .'
A Derivation of the conservation of momentum (4.4) begins by taking N
(3.5b) times (ky + 6¢,) and adding to (3.5¢) times ¢, to obtain ;
. F) 5
ol(ha + 66,0631+ 2164, (b + 86 Jurl+ 3
3
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a
a_y[S.l. (k1 + 8¢ )vi] + (R + 66, )ur = —(hs + 5§1)§1,- (A.11)
The final term on the left-hand-side can be written as
d 2}
(hy +6¢1)u1 = Z-[(ha + 8¢, )urz] — 2o—[us(ha + 66,)].
The last term in this expression can be replaced using (3.5¢c) times z
2] ] 2]
zooluwilh +66))] = — o [z(ha + 6¢,)] - 5;[“1("1 +6¢,)]-

With these substitutions (A.11) becomes

e 7]
E[(hl + 5§1)(§1. +z)] + E[(fx. + z)(h1 + 6, )u]+

0
5;[“1. +z)(h1 + 6¢,)v1)y = —(h1 + afl)gl,- (A.12)
A similar manipulation for the lower layer yields
02 h, d hau,
¢ [ ton ]+ 2 [ o)
0 | hgv
ay (1 vz (gn + Z)] —h:gT, (A.13)

Adding (A.12) and (A.13) and then averaging over the domain of the fluid
gives the final result

ad h
5] (486006, 4 2) + 25 (sr, + 2] de =0,
Equations (4.4) follow by ignoring terms of 0(6).

Conservation of Wave Energy

An expression for the time rate-of-change of the wave energy (4.9d) can
be obtained directly from the linearized perturbation equations (3.8) and
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o (3.9). Multiplying (3.8a) by hi¢, and (3.8b) by hi¢,, then adding yields
i :-::.. 2 :
po s 9% §1 +¢1 3 hl §1.+§!! _ 4
- |
X -’;} — b
_'4;_:: —E(l + ﬁ,)ulgl_ - hlvlg‘l’. (A14) ‘
[) ) 1
ek A similar operation on the lower layer equations (3.9) yields
e ¢3 +¢2 _
oo o [ ()| = Bt ). a9
:;: To include the potential energy due to the displacement of the interface,
W

] multiply (3.8¢) by ¢, and (3.9c) by ¢p then add to get
s at + ¢y (urka)e + ¢4 [vrhy — T,y +
1S J— —

Y

where terms of 0(6) have been ignored. Adding (A.14)-(A.16) yields

¢ +¢i, $h+¢1,) ,
a ["1 (T) ”‘_(—z—“) Y

d ,— —
-—-(h;ulg'l + hguzgr) +

.". L'
X,

. ." "a's:"‘" Pl AV“/“:"‘."‘:' B l"’l. ]
LR A [ Y

é; h1 (S’l, - gl-) + h—1v1§1 + Evzgr] = "vzﬁl-ulgl, + gl (sz)v-
(A.17)

LN,

3

The cross-term appearing in the definition of wave energy (4.9d) is obtained
by multiplying (3.8b) by —v¢, and (3.8¢) by ¥¢, then adding. The result

is

- .
o
s

-

AR

s a ml

(=96261,)e = (1 + T)hTusg, + 06, (uahy).+
W_ﬁﬁ,”l, - vz(§1,§z)v - U¢,¢,, = 0. (A.18)
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N Adding (A.18) to (A.17) yields

\'-:

5 d [—(¢3 +¢i — (ST, +$3 2 -
A4S - [h, (——g" g") — 6,6, +ha (——g“ gT’) + 8 :
D at 2 2 2

W J ,— — 8
D) ;:‘: E(hlulgl ‘:’ hzu:gr) + '
o 3 |— (61, ¢ — B
"‘:‘, 3_y h,© (—-1——5——11) + hyvi§, + EWCT - vzgl,gz - szfl] = |:

~Thiuigy, + (1 + a)hiusg, — 5¢, (uih)s — Thi$y, vy,

\ ::": ’
“'. Integrating over the domain of the fluid and applying the same boundary 3
%o, .

2 conditions as used in the derivation of (4.3) and (4.4) results in ;
° 3E ‘
. = [, + vug, + |
NS Riv(us, +v1,)$y, — Turg, — UT:uiG,]dA

e
\
e P

which is equation (4.13). '

vy,

Displacement of the Surface Front

LI

b '::l' “l 'i"j:"" ’.{

As mentioned in section 4.2, the final term in (4.13) can be related to

A - g

the changes in time of the displacement of the surface front. Consider the

A ) 0(e?) upper layer continuity equation derived from (3.5¢): "3
YIS -
e .
:,f: (u1$3)s + (vi€3)y = 0. ,
L y.
o The y-average of this equation over one wavelength is &
e
b /(ulg,).dy = 0. !
nY d
o
® The final term in (4.13) can be written as
[ 'f
X ’\l'. vz U’ =gy

2=—00

o’
bt A
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{
\ ~"“
';* From the 0(e?) y-averaged continuity equation the first term is zero. Since
i the disturbance will be assumed to be frontally-trapped (see section 5.2 for
e, details), then u; — 0 as z — —o0 so that the second term is only evaluated
, at the front z = z;. At the displaced position of the front (z = z; + ¢) the
,--‘ total depth vanishes
«f hy+6¢, =0 at T=1=r5+e¢
o This can be expanded in a Taylor series to get an expression valid at the -
.'\‘::j undisturbed frontal location N
\ ::E:ﬁ I 3 . -
o [(1 — 6)hi + 6, + ¢ — §T] + ‘E[(l - 6)h1 +66,+6,— fT] =0, =
® z=z, z=z, F
K but since by =, =0 at z = z; and h;, = {;_ = ¥ this reduces to the 0(e) N
| expression
,‘ Gi—¢)=-v¢ at z=z.
l A

Since (¢, —¢p) = 6¢, — ¢, from (3.10) and if terms of 0(6) are ignored this
can be written as

@ Al

¢, = Te at z =z, (A.19)

DA
L I T I
. LIPS

g

The velocity of the front in the z—direction can be written as

iu-{

d _9 2
A
n v— A.20
b "= (6t+ ay) (4.20) 3
e Substituting (A.19) and (A.20) into the term evaluated at the front in the ‘
. energy equation one obtains
oN
D ﬁ’/ v (e’) (e’) \
2 Y [ d —_-—-/ £) vl d b
; 2 162 z=z; Y 2 [ 2/, 2/,] le=2; Y 4
0. a [v° / 2 :
= —|— ] € d
o at [4 e=ey T :
v X
I :
'n' .
‘i
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Finally, this can be written on the left-hand-side which yields equation
(4.14):

é—t [Ez - T/G ez, dy] = —/ [hlv,ulgl. +v u1§,'+

h T (ul, + vl,) C1, — vulg,] dA.

Derivation of dE;/dt «x u1q

To relate E;/dt to the cross-front eddy flux of perturbation potential
vorticity, the Reynolds stress terms and baroclinic energy conversion term
on the right-hand-side of (4.13) must be rewritten:

2E,

ot /[—(h_xv.uxs‘x. +Tuigy, + htu 6y )+

Eﬁu;Q,g’, — Evt;h(l']dA. (A.21)

The term in parentheses can be rewritten as h;u,¢,  because 8(hi17ui¢, )/dz
vanishes over the integral. To rewrite the final term in the integrand of
(A.21), multiply (3.8a) by ¢,  and (3.8b) by ¢, = then add to obtain

) g’l + gl
CrepS1ye ~ S1,5 810 T VIS, — (1 +v.)u1g," = a—y (_2_ﬁ) .

Multiplying by h,¥ then averaging over the domain of the fluid yields

/h—,v[gl_'g," = 61,1, T U1y, — (1 +T)usg, |[dA=0. (A.22)

The first two terms may be replaced by

/ _h_lvgluglﬂ dA - / H;Ugl'glil' dA’
— [ hi¥¢, ¢y, dA / hio(=(¢5,,$0. ) + 61,84, J44,
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o
N so (A.22) becomes
-
. R
\:' /hlv["(gx,,gl.)‘ + "lgl,, -1+ v,)u,g,"]dA =0.
z
-~ Rearranging gives the desired result
-l‘,.- —_— _—
i't: -/h,vvl,gh dA = /hlv[(l + 0w, + (64,61, )ddA.
Substituting into (A.21) yields
L) .‘_: :
@ aE, / [g,,, HUH TG, O]y
:._-‘ hl
> 5 / h1T¢, ¢, d4,
which is just (4.16) since gy is given by (4.5¢). [Note that a term of 0(6) in
& o the definition of ¢; has been ignored.]
’:'_; To understand why the final term in (4.16) exists, rewrite the definition
of ¢; given by (4.5¢c) in a slightly different form
+ —_—
b St Sy~ —¢n) TS, (A.23)
h, hy
" The first group of terms is the exact geostrophic form of the perturbation
potential vorticity. The final term represents part of the ageostrophic per-
turbation potential vorticity. To recognize this, the ageostrophic potential
vorticity
. ¢ = vf, —uf
y ok
. (where the superscript “a” denotes an ageostrophic quantity) can be related
.0 geostrophic quantities through the definitions of ageoetrophic velocity
ontained from (3.8a) and (3.8b). Substituting
4
u: = - m(v'u{ + V{‘ + va'), (A.24)
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and
vi o= oul, - Ol (A 25)

into the definition of ¢} yields

a v, ’ ’ [}
= = -— - {ul ~uj -+ Dy (A 26
4 R« 0')( 1, lee 1, )
Since uf = - $1, the first term in the parentheses, multiplied by (1 « ¥,

can be identified with the final term in {A.23). Now, the flux of g, by the
full cross-front velocity (u;, = u} + u}) will necessarily contain a purely
ageostrophic quantity ‘i.e. u] times part of (A 26}

This ageostrophic flux can be related to the time rate-of-change of that
part of the ageostrophic energy consistent with the geostrophic momentum
approximation as follows. The terms neglected in the derivation of the
upper layer geostrophic momentum equations (3.8a) and (3 8b) provide

expressions which govern the ageostrophic velocity fields.

ui, + Ouy =0, (A 27)
vj, + Oy}, = 0. (A 28)

Multiplying (A.27) by A;(1 + 0,)(u} + u?) and (A 28) by A,(v! + +?) then
adding yields

'_1—1[(1 + 0,) (‘%—) + (%) } « hy(1+ e, )ulu] o+ viv}
¢ ¢

-ohy (1« Oeiuiul « vieg

(A 29)

The terms on the right-hand-side of (A.290) may be replaced using the y-
derivatives of (A.24) and (A.25):

o« _ 0 ]
vy, =Yy, * Uu,,,.

— ' '
(1 +0)u; = -Opuf -vi, Ovf
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['he result s

' ud v , ‘ \
hy il - by ( (1 ) . ( 'l ) « hy (1 ﬁ.)u'{u','. + ufv'l"J =
a 2/, \ 2
vhy (vfuf )« (vul vf),),

at o when averaged over the domain of the fliid 19

Pl 2
u'; v?

y [ hy ibe vy 2 . ; dA - /h. (1« ¢)ulu] « viv] |dA =
' : \
)
(;‘ thyviuf dA.
< tee ! o and uf §), the term on the right-hand-side of this

expreasion o ust esqual to the final term 1n {4 16) The terms on the

vt vand side represent the agevstrophic energy field, consistent with the
geemtrophic momentum approximation, whose existence was anticipated

abiove from exammation of the flux of part of the ageostrophic potential

ctaty Note that the term [{(1+ ¢,uf u} < of v }dA, absent on the left-

and side an be obtained by multiplying (3 #a) and (3 %b) by A, (1 + 8, )u?

%
At h e

rvapew Lively 1n the derivation of the coneervation of wave energy
aee A

\ reratianat o hetween the timne rateof change of F,. defined 1n (4.9d),

it the geaatrophie momentum forma of the Reynolds stresses and the

atin o convermon of energy 10 given by (4 131 However, the relationship

by ot the Hua of potential vorticity s complicated by the presence

Cadd tona, terine as sketched above  Thin s jearly a dinadvantage of

e gemtropho o mementuimn approximation o be able to relate the time

“ate o tange of the wave energy to the change 11 time of the particle

Cwperapar. aee 4 20, it was desided 1o use the {ull form of the wave energy

o

qremtyoptie poie ageoatrophic ! rather than just the geostrophic part The

ware energy  Froos used throughout the analysis presented in the

ceraLnder of chapters 4 and S
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Conservation of Wave Momentum

Conservation of wave ;,-momentum can be derived from the linearized
perturbation equations (3.8) and (3.9) as follows. Multiplying (3.8b) by
-¢, and (3.8¢) by ¢, and adding yields

—($361.)e — (296, )y — (1 + Us)ui$,+

(“lh_l)zfl. + Evi.gl, =¢,$2 (A.30) =
A similar operation for the lower layer [(3.9b)¢,+ (3.9¢)Cr | gives "E
(S36T,)e + uag, + (“‘-'h_l)SS'T.+ .t
- ¢3 >
hava,$r, = =636, — (—21) : (A.31) ,
v .\
;
Adding (A.30) to (A.31) and averaging over the domain of the fluid yields ','\
7
a — 0
at /(S'T. - (,_)(, dA = /(1 + vt)“lf: - (“J{l—):gl, - hl”l,(x, - 5
u3{, ~ (uzh_:)-fr, - h:”!,gr,- -~
The right-hand-side is rewritten using manipulations similar to those used
in the derivation of the conservation of energy with the result -
oM, -1 $i.. t (1 +0,)¢, +Qi¢, o [ —
Y
—12 gT.. + §1- - ngz ad : 4
/;11 U3 [ f:' dA + a/ﬁ—:—gr‘fru dA, (A32) G
where (), and Q; are defined by (4.5b) and (4.6b). The quantitizs in square A
\B
brackets are just the perturbation potential vorticities in each layer given :::
by (4.5¢) and (4.6c) so that (A.32) becomes (4.21). The extra terms not :::
incladed in the flux of ¢, and ¢; are related to part of the ageostrophic ‘:'_
momentum field in a manner similar to that discussed above for energy. ‘
Again, these extra terms are removed by considering the full form of the t l,
wave momentum (geostrophic plus ageostrophic) as incorporated in (4.22). "
W
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